Skip to main content

Heat Shock Proteins and Abiotic Stress Tolerance in Plants

  • Chapter
  • First Online:
Regulation of Heat Shock Protein Responses

Part of the book series: Heat Shock Proteins ((HESP,volume 13))

Abstract

Abiotic stresses restrict plant growth and development, and reduce harvest index of many crop species worldwide. Maintenance of native conformation of proteins and reducing the accumulation of non-native proteins are imperative for survival under stress conditions as such stresses frequently lead to protein aggregation causing metabolic dysfunction. Heat shock proteins (HSP) play a key role in conferring abiotic stress tolerance. Plants protect themselves from numerous stresses by inducing HSP, besides some stress-responsive proteins, suggesting analogous response mechanisms. A close association between the HSP and ROS also co-exists, indicating that plants have evolved to gain a higher degree of regulation over ROS toxicity and can use ROS as elicitor to induce HSP for better adaptations through activating an array of molecules. Therefore, unraveling the mechanisms of plant response against various stress and the role of HSP in acquired stress tolerance is utmost important to delineate their specific function as a part of stress-responsive module. The HSP have been well characterized in different crop species, albeit the knowledge about their correlation with genome sequence information as well as their functional plasticity is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, Z., & Clarke, A. K. (2002). Cutting edge of chloroplast proteolysis. Trends in Plant Science, 7, 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Adam, Z., Adamska, I., Nakabayashi, K., Ostersetzer, O., Haussuhl, K., Manuell, A., Zheng, B., Vallon, O., Rodermel, S. R., Shinozaki, K., & Clarke, A. K. (2001). Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiology, 125, 1912–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal, L., Chakraborty, S., Jaiswal, D., Gupta, S., Datta, A., & Chakraborty, N. (2008). Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.) Journal of Proteome Research, 7, 3803–3817.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal, L., Narula, K., Basu, S., Shekhar, S., Ghosh, S., Datta, A., Chakraborty, N., & Chakraborty, S. (2013). Comparative proteomics reveals a role for seed storage protein, AmA1 in cellular growth, development and nutrient accumulation. Journal of Proteome Research, 12, 4904–4930.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal, L., Gupta, S., Mishra, S. K., Pandey, G., Kumar, S., Chauhan, P., Chakrabarty, D., & Nautiyal, C. (2016). Elucidation of complex nature of PEG induced drought-stress response in Rice root using comparative proteomics approach. Frontiers in Plant Science, 7, 1466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn, Y. J., & Song, N. H. (2012). A cytosolic heat shock protein expressed in carrot (Daucus carota L.) enhances cell viability under oxidative and osmotic stress conditions. Hortscience, 47, 143–148.

    CAS  Google Scholar 

  • Ahuja, I., de Vos, R. C., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15, 664–674.

    Article  CAS  PubMed  Google Scholar 

  • Alvim, F. C., Carolino, S. M., Cascardo, J. C., Nunes, C. C., Martinez, C. A., Otoni, W. C., & Fontes, E. P. (2001). Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiology, 126, 1042–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Whaibi, M. H. (2011). Plant heat-shock proteins: A mini review. Journal of King Saud University – Science, 23, 139–150.

    Article  Google Scholar 

  • Bae, M. S., Cho, E. J., Choi, E.-Y., & Park, O. K. (2003). Analysis of the Arabidopsis nuclear proteome and its response to cold stress. The Plant Journal, 36, 652–663.

    Article  CAS  PubMed  Google Scholar 

  • Balbuena, T. S., Salas, J. J., Martínez-Force, E., Garcés, R., & Thelen, J. J. (2011). Proteome analysis of cold acclimation in sunflower. Journal of Proteome Research, 10, 2330–2346.

    Article  CAS  PubMed  Google Scholar 

  • Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S. K., Nover, L., Port, M., Scharf, K. D., Tripp, J., Weber, C., Zielinski, D., & von Koskull-Döring, P. (2004). Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences, 29, 471–487.

    Article  CAS  PubMed  Google Scholar 

  • Banti, V., Mafessoni, F., Loreti, E., Alpi, A., & Perata, P. (2010). The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiology, 152, 1471–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banzet, N., Richaud, C., Deveaux, Y., Kazmaier, M., Gagnon, J., & Triantaphylides, C. (1998). Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. The Plant Journal, 13, 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Benešová, M., Holá, D., Fischer, L., Jedelský, P. L., Hnilička, F., Wilhelmová, N., Rothová, O., Kočová, M., Procházková, D., Honnerová, J., Fridrichová, L., & Hniličková, H. (2012). The physiology and proteomics of drought tolerance in maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One, 7, e38017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bharti, K., & Nover, L. (2002). Heat stress-induced signaling. In D. Scheel & C. Wasternack (Eds.), Plant signal transduction: Frontiers in molecular biology (pp. 74–115). Oxford., 2002: Oxford University Press.

    Google Scholar 

  • Bhushan, D., Jaiswal, D. K., Ray, D., Basu, D., Data, A., Chakraborty, S., & Chakraborty, N. (2011). Dehydration-responsive reversible and irreversible changes in the extracellular matrix: Comparative proteomics of chickpea genotypes with contrasting tolerance. Journal of Proteome Research, 10, 2027–2046.

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme, L., Monclus, R., Vincent, D., Carpin, S., Lomenech, A. M., Plomion, C., Brignolas, F., & Morabito, D. (2009). Leaf proteome analysis of eight Populus ×euramericana genotypes: Genetic variation in drought response and in water-use efficiency involves photosynthesis-related proteins. Proteomics, 9, 41211–41242.

    Article  CAS  Google Scholar 

  • Boston, R. S., Viitanen, P. V., & Vierling, E. (1996). Molecular chaperones and protein folding in plants. Plant Molecular Biology, 32, 191–222.

    Article  CAS  PubMed  Google Scholar 

  • Breiman, A. (2014). Plant Hsp90 and its co-chaperones. Current Protein & Peptide Science, 15, 232–244.

    Article  CAS  Google Scholar 

  • Burke, J. J., Hatfield, J. L., Klein, R. P., & Mullet, J. E. (1985). Accumulation of heat shock proteins in field-grown cotton. Plant Physiology, 78, 394–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel, G., Dubey, M., & Meena, R. (2013). Differential expression of heat shock proteins and heat stress transcription factor genes in rice exposed to different levels of heat stress. Journal of Plant Biochemistry and Biotechnology, 22, 277–285.

    Article  CAS  Google Scholar 

  • Chankova, S. G., Dimova, E. G., Mitrovska, Z., Miteva, D., Mokerova, D. V., Yonova, P. A., & Yurina, N. P. (2014). Antioxidant and HSP70B responses in Chlamydomonas reinhardtii genotypes with different resistance to oxidative stress. Ecotoxicology and Environmental Safety, 101, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., & Vierling, E. (1991). Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Molecular & General Genetics, 226, 425–431.

    Article  CAS  Google Scholar 

  • Chen, X., Lin, S., Liu, Q., Huang, J., Zhang, W., Lin, J., Wang, Y., Ke, Y., & He, H. (2014a). Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica et Biophysica Acta, 1844, 818–828.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Chen, X., Wang, H., Bao, Y., & Zhang, W. (2014b). Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Science, 12, 33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choudhary, M. K., Basu, D., Datta, A., Chakraborty, N., & Chakraborty, S. (2009). Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Molecular & Cellular Proteomics, 8, 1579–1598.

    Article  CAS  Google Scholar 

  • Cruz de carvalho, R., Bernardes DA Silva, A., Soares, R., Almeida, A. M., Coelho, A. V., Marques DA Silva, J., & Branquinho, C. (2014). Differential proteomics of dehydration and rehydration in bryophytes: Evidence towards a common desiccation tolerance mechanism. Plant, Cell & Environment, 37, 1499–1515.

    Article  CAS  Google Scholar 

  • Czarnecka, E., Nagao, R. T., Key, J. L., & Gurley, W. B. (1988). Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: Heavy-metal-induced inhibition of intron processing. Molecular and Cellular Biology, 8, 1113–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downs, C. A., Ryan, S. L., & Heckathorn, S. A. (1999). The chloroplast small heat-shock protein: Evidence for a general role in protecting photosystem II against oxidative stress and photoinhibition. Journal of Plant Physiology, 155, 488–496.

    Article  CAS  Google Scholar 

  • Duck, N. B., & Folk, W. R. (1994). Hsp70 heat shock protein cognate is expressed and stored in developing tomato pollen. Plant Molecular Biology, 26, 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, E., Bahrman, N., Goulas, E., Valot, B., Sellier, H., Hilbert, J. L., Vuylsteker, C., Lejeune-Hénaut, I., & Delbreil, B. (2011). A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.) Plant Science, 180, 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Dupuis, I., & Dumas, C. (1990). Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 94, 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duressa, D., Soliman, K., Taylor, R., & Senwo, Z. (2011). Proteomic analysis of soybean roots under aluminum stress. International Journal of Plant Genomics, 2011, 1–12.

    Article  CAS  Google Scholar 

  • Echevarría-Zomeño, S., Fernández-Calvino, L., Castro-Sanz, A. B., López, J. A., Vázquez, J., & Castellano, M. M. (2016). Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis. Plant, Cell & Environment, 39, 1264–1278.

    Article  CAS  Google Scholar 

  • Fragkostefanakis, S., Röth, S., Schleiff, E., & Scharf, K. D. (2015). Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant, Cell & Environment, 38, 1881–1895.

    Article  CAS  Google Scholar 

  • Giacomelli, L., Rudella, A., & van Wijk, K. J. (2006). High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiology, 141, 685–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, S. J., Zhou, H. Y., Zhang, X. S., Li, X. G., & Meng, Q. W. (2007). Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. Journal of Plant Physiology, 164, 126–136.

    Article  CAS  PubMed  Google Scholar 

  • Guo, M., Liu, J. H., Lu, J. P., Zhai, Y. F., Wang, H., Gong, Z. H., Wang, S. B., & Lu, M. H. (2015). Genome-wide analysis of the CaHsp20 gene family in pepper: Comprehensive sequence and expression profile analysis under heat stress. Frontiers in Plant Science, 6, 806.

    PubMed  PubMed Central  Google Scholar 

  • Guo, M., Liu, J. H., Ma, X., Luo, D. X., Gong, Z. H., & Lu, M. H. (2016). The plant Heat Stress Transcription Factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science, 7, 114.

    PubMed  PubMed Central  Google Scholar 

  • Gurley, W. B. (2000). HSP101: A key component for the acquisition of thermotolerance in plants. Plant Cell, 12, 457–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, M., & Walbot, V. (1989). Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiology, 91, 930–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, E. W., & Heckathorn, S. A. (2001). Mitochondrial adaptations to NaCl complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiology, 126, 1266–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381, 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Helm, K. W., Lafayete, P. R., Nago, R. T., Key, J. L., & Vierling, E. (1993). Localization of small heat shock proteins to the higher plant endomembrane system. Molecular and Cellular Biology, 13, 238–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hlaváčková, I., Vítámvás, P., Šantrůček, J., Kosová, K., Zelenková, S., Prášil, I. T., Ovesná, J., Hynek, R., & Kodíček, M. (2013). Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor. International Journal of Molecular Sciences, 14, 8000–8024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoang, T. M. L., Moghaddam, L., Williams, B., Khanna, H., Dale, J., & Mundree, S. G. (2015). Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death. Frontiers in Plant Science, 6, 175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, W., Hu, G., & Han, B. (2009). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Science, 176, 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Li, Y., Li, C., Yang, H., Wang, W., & Lu, M. (2010). Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. Journal of Plant Growth Regulation, 29, 455–464.

    Article  CAS  Google Scholar 

  • Huang, S., Ratliff, K. S., Schwartz, M. P., Spenner, J. M., & Matouschek, A. (1999). Mitochondrial unfold precursor proteins by unraveling them from their N-termini. Nature Structural Biology, 6, 1132–1138.

    Article  CAS  PubMed  Google Scholar 

  • Hubert, D. A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K., & Dangl, J. L. (2003). Cytosolic HSP90 associates with and modulates the ARABIDOPSIS RPM1 disease resistance protein. The EMBO Journal, 22, 5679–5689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hüther, C. M., Martinazzo, E. G., Rombaldi, C. V., & Bacarin, M. A. (2017). Effects of flooding stress in ‘Micro-Tom’ tomato plants transformed with different levels of mitochondrial sHSP23.6. Brazilian Journal of Biology, 77, 43–51.

    Article  Google Scholar 

  • Jackson-Constan, D., Akita, M., & Keegstra, K. (2001). Molecular chaperones involved in chloroplast protein import. Biochimica et Biophysica Acta, 1541, 102–113.

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal, D. K., Ray, D., Choudhary, M. K., Subba, P., Kumar, A., Verma, J., Kumar, R., Datta, A., Chakraborty, S., & Chakraborty, N. (2013). Comparative proteomics of dehydration response in the rice nucleus: New insights into the molecular basis of genotype-specific adaptation. Proteomics, 13, 3478–3497.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, C., Xu, J., Zhang, H., , Zhang, X., Shi, J., Li, M. and Ming, F. (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant, Cell & Environment 32, 1046–1059.

    Article  CAS  Google Scholar 

  • Jin, Y., Zhang, C., Yang, H., Yang, Y., Huang, C., Tian, Y., & Lu, X. (2011). Proteomic analysis of cold stress responses in tobacco seedlings. African Journal of Biotechnology, 10, 18991–19004.

    Article  CAS  Google Scholar 

  • Jung, Y. J., Nou, S. I., & Kang, K. K. (2014). Overexpression of Oshsp16.9 gene encoding small heat shock protein enhances tolerance to abiotic stresses in rice. Plant Breeding and Biotechnology, 2, 370–379.

    Article  Google Scholar 

  • Jungkunz, I., Link, K., Vogel, F., Voll, L. M., Sonnewald, S., & Sonnewald, U. (2011). AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. The Plant Journal, 66, 983–995.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, R. J. (1999). Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes & Development, 13, 1211–1233.

    Article  CAS  Google Scholar 

  • Keeler, S., Boettger, C. M., Haynes, J. G., Kuches, K. A., Johnson, M. M., Thureen, D. L., Keeler, C. L., Jr., & Kitto, S. L. (2000). Acquired thermotolerance and expression of the HSP100/ClpB genes of Lima bean. Plant Physiology, 123, 1121–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J., & Harter, K. (2007). The AtGenExpress global stress expression data set: Protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 50, 347–363.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. R., & An, G. (2013). Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions. Journal of Plant Physiology, 170, 854–863.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B. H., & Schöffl, F. (2002). Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins. Journal of Experimental Botany, 53, 371–375.

    Article  CAS  PubMed  Google Scholar 

  • Kollipara, K. P., Saab, I. N., Wych, R. D., Lauer, M. J., & Singletary, G. W. (2002). Expression profiling of reciprocal maize hybrids divergent for cold germination and desiccation tolerance. Plant Physiology, 129, 974–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu, S., Yamamoto, A., Nakamura, T., Nouri, M. Z., Nanjo, Y., Nishizawa, K., & Furukawa, K. (2011). Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. Journal of Proteome Research, 10, 3993–4004.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, S., Makino, T., & Yasue, H. (2013). Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants. PLoS One, 8, e65301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo, H. J., Park, S. M., Kim, K. P., Suh, M. C., Lee, M. O., Lee, S. K., Xinli, X., & Hong, C. B. (2015). Small heat shock proteins can release light dependence of tobacco seed during germination. Plant Physiology, 167, 1030–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korotaeva, N. E., Antipina, A. I., Grabelnykh, O. I., Varakina, N. N., Borovskii, G. B., & Voinikov, V. K. (2001). Mitochondrial low-molecular-weight heat-shock proteins and the tolerance of cereal mitochondria to hyperthermia. Russian Journal of Plant Physiology, 48, 798–803.

    Article  CAS  Google Scholar 

  • Kosová, K., Vítámvás, P., Planchon, S., Renaut, J., Vanková, R., & Prášil, I. T. (2013). Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. Journal of Proteome Research, 12, 4830–4845.

    Article  PubMed  CAS  Google Scholar 

  • Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., & Scharf, K. D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10, 310–316.

    Article  CAS  PubMed  Google Scholar 

  • Krishna, P., & Gloor, G. (2001). The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress & Chaperones, 6, 238–246.

    Article  CAS  Google Scholar 

  • Kropat, J., Oster, U., Rüdiger, W., & Beck, C. F. (1997). Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proceedings of the National Academy of Sciences, 94, 14168–14172.

    Article  CAS  Google Scholar 

  • Kumar, M., Padula, M. P., Davey, P., Pernice, M., Jiang, Z., Sablok, G., Contreras-Porcia, L., & Ralph, P. J. (2017a). Proteome analysis reveals extensive light stress-response reprogramming in the seagrass Zostera muelleri (Alismatales, Zosteraceae) metabolism. Frontiers in Plant Science, 17, 2023.

    Google Scholar 

  • Kumar, N., Suyal, D. C., Sharma, I. P., Verma, A., & Singh, H. (2017b). Elucidating stress proteins in rice (Oryza sativa L.) genotype under elevated temperature: A proteomic approach to understand heat stress response. 3 Biotech, 7, 205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkindale, J., Mishkind, M., & Vierling, E. (2005). Plant responses to high temperature. In M. A. Jenks & P. M. Hasegawa (Eds.), Plant Abiotic Stress (pp. 100–144). Oxford: Blackwell Publishing Ltd.

    Chapter  Google Scholar 

  • Lee, J., & Ahn, Y.-J. (2013). Heterologous expression of a carrot small heat shock protein increased Escherichia coli viability under lead and arsenic stresses. Hortscience, 48, 1323–1326.

    Google Scholar 

  • Lee, U., Rioflorido, I., Hong, S.-W., Larkindale, J., Waters, E. R., & Vierling, E. (2007). The Arabidopsis ClpB/Hsp100 family of proteins: Chaperones for stress and chloroplast development. The Plant Journal, 49, 115–127.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. G., Ahsan, N., Lee, S. H., Lee, J. J., Bahk, J. D., Kang, K. Y., & Lee, B. H. (2009). Chilling stress-induces proteomic changes in rice roots. Journal of Plant Physiology, 166, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Lehesranta, S. J., Davies, H. V., Shepherd, L. V. T., Koistinen, K. M., Massat, N., Nunan, N., McNicol, J. W., & Kärenlampi, S. O. (2006). Proteomic analysis of the potato tuber life cycle. Proteomics, 6, 6042–6052.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Wei, Z., Qiao, Z., Wu, Z., Cheng, L., & Wang, Y. (2013). Proteomics analysis of alfalfa response to heat stress. PLoS One, 8, e82725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao, J. L., Zhou, H. W., Zhang, H. Y., Zhong, P. A., & Huang, Y. J. (2014). Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. Journal of Experimental Botany, 65, 655–671.

    Article  CAS  PubMed  Google Scholar 

  • Lim, C. J., Yang, K. A., Hong, J. K., Choi, J. S., Yun, D. J., Hong, J. C., Chung, W. S., Lee, S. Y., Cho, M. J., & Lim, C. O. (2006). Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. Journal of Plant Research, 119, 373–383.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S. K., Chang, M. C., Tsai, Y. G., & Lur, H. S. (2005). Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 5, 2140–2156.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. J., Li, C. Y., Lin, S. K., Yang, F. H., Huang, J. J., Liu, Y. H., & Lur, H. S. (2010). Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in Rice (Oryza sativa L.) Journal of Agricultural and Food Chemistry, 58, 10545–10552.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., & Dinesh-Kumar, S. P. (2004). Molecular chaperone hsp90 associates with resistance protein n and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. The Journal of Biological Chemistry, 279, 2101–2108.

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Caitar, V. S., de Carvalho, M. C. C. G., Darben, L. M., Kuwahara, M. K., Nepomuceno, A. L., Dias, W. P., Abdelnoor, R. V., & Marcelino-Guimarães, F. C. (2013). Genome-wide analysis of the Hsp20 gene family in soybean: Comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics, 14, 577.

    Article  PubMed  PubMed Central  Google Scholar 

  • Low, D., Brandle, K., Nover, L., & Forreiter, C. (2000). Cytosolic heat stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta, 211, 575–582.

    Article  CAS  PubMed  Google Scholar 

  • Lubben, T. H., Donaldson, G. K., Viitanen, P. V., & Gatenby, A. A. (1989). Severa1 proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. Plant Cell, 1, 1223–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H., & Kiba, A. (2007). Induction of a small heat shock protein and its functional roles in nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiology, 145, 1588–1599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majoul, T., Bancel, E., Triboï, E., Ben Hamida, J., & Branlard, G. (2004). Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction. Proteomics, 4, 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Malik, M. K., Slovin, J. P., Hwang, C. H., & Zimmerman, J. L. (1999). Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. The Plant Journal, 20, 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Manaa, A., Ben Ahmed, H., Valot, B., Bouchet, J. P., Aschi-Smiti, S., Causse, M., & Faurobert, M. (2011). Salt and genotype impact on plant physiology and root proteome variations in tomato. Journal of Experimental Botany, 62, 2797–2813.

    Article  CAS  PubMed  Google Scholar 

  • Merret, R., Carpentier, M. C., Favory, J. J., Picart, C., Descombin, J., Bousquet-Antonelli, C., Tillard, P., Lejay, L., Deragon, J. M., & Charng, Y. Y. (2017). Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock. Plant Physiology, 174, 1216–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertz-Henning, L. M., Pegoraro, C., Maia, L. C., Venske, E., Rombaldi, C. V., & Costa de Oliveira, A. (2016). Expression profile of rice Hsp genes under anoxic stress. Genetics and Molecular Research, 15(2.) gmr.15027954.

    Google Scholar 

  • Mishra, R. C., Richa, M. R. C., & Grover, A. (2016). Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants. Plant Science, 250, 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, D., Shekhar, S., Agrawal, L., Chakraborty, S., & Chakraborty, N. (2017). Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways. Food Chemistry, 221, 1077–1087.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19.

    Article  CAS  PubMed  Google Scholar 

  • Mu, C., Zhang, S., Yu, G., Chen, N., Li, X., & Liu, H. (2013). Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS One, 8, e82264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami, T., Matsuba, S., Funatsuki, H., Kawaguchi, K., Saruyama, H., Tanida, M., & Sato, Y. (2004). Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Molecular Breeding, 13, 165–175.

    Article  CAS  Google Scholar 

  • Muthusamy, S. K., Dalal, M., Chinnusamy, V., & Bansal, K. C. (2016). Differential regulation of genes coding for organelle and cytosolic Clp ATPases under biotic and abiotic stresses in wheat. Frontiers in Plant Science, 7, 929.

    PubMed  PubMed Central  Google Scholar 

  • Muthusamy, S. K., Dalala, M., Chinnusamy, V., & Bansal, K. C. (2017). Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. Journal of Plant Physiology, 211, 100–113.

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto, H., & Vigh, L. (2007). The small heat shock proteins and their clients. Cellular and Molecular Life Sciences, 64, 294–306.

    Article  CAS  PubMed  Google Scholar 

  • Navascués, J., Pérez-Rontomé, C., Sánchez, D. H., Staudinger, C., Wienkoop, S., Rellán-Álvarez, R., & Becana, M. (2012). Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus. The New Phytologist, 193, 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, D., Lichtenberger, O., Günther, D., Tschiersch, K., & Nover, L. (1994). Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta, 194, 360–370.

    Article  CAS  Google Scholar 

  • Nieto-Sotelo, J., Martínez, L. M., Ponce, G., Cassab, G. I., Alagón, A., Meeley, R. B., Ribau, J. M., & Yang, R. (2002). Maize HSP101 plays important roles in both induced and basal Thermotolerance and primary root growth. Plant Cell, 14, 1621–1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizawa-Yokoi, A., Tainaka, H., Yoshida, E., Tamoi, M., Yabuta, Y., & Shigeoka, S. (2010). The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress. Plant & Cell Physiology, 51, 486–496.

    Article  CAS  Google Scholar 

  • Ogawa, I., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2009). Time course analysis of gene regulation under cadmium stress in rice. Plant and Soil, 325, 97.

    Article  CAS  Google Scholar 

  • Ono, K., Hibino, T., Kohinata, T., Suzuki, S., Tanaka, Y., Nakamura, T., Takabe, T., & Takabe, T. (2001). Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperature tolerance of tobacco during germination and early growth. Plant Science, 160, 455–461.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A., Chakraborty, S., Datta, A., & Chakraborty, N. (2008). Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.) Molecular & Cellular Proteomics, 7, 88–107.

    Article  CAS  Google Scholar 

  • Pandey, A., Rajamani, U., Verma, J., Subba, P., Chakraborty, N., Data, A., Chakraborty, S., & Chakraborty, N. (2010). Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: A proteomic approach. Journal of Proteome Research, 9, 3443–3464.

    Article  CAS  PubMed  Google Scholar 

  • Pareek, A., Singla, S. L., & Grover, A. (1998). Plant Hsp90 family with special reference to rice. Journal of Biosciences, 23, 361–367.

    Article  CAS  Google Scholar 

  • Parsell, P. A., & Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Review of Genetics, 27, 437–496.

    Article  CAS  PubMed  Google Scholar 

  • Pi, E., Qu, L., Hu, J., Huang, Y., Qiu, L., Jiang, B., Liu, C., Peng, T., Zhao, Y., Wang, H., Tsai, S. T., Ngai, S., & Du, L. (2016). Mechanisms of soybean roots tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Molecular & Cellular Proteomics, 15, 266–288.

    Article  CAS  Google Scholar 

  • Prasad, B. D., Goel, S., & Krishna, P. (2010). In Silico identification of carboxylate clamp type tetratricopeptide repeat proteins in Arabidopsis and Rice as putative co-chaperones of Hsp90/Hsp70. PLoS One, 5, e12761.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pratt, W. B., & Toft, D. O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimental Biology and Medicine, 228, 111–133.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, W. B., Galigniana, M. D., Harrell, J. M., & Deranco, D. B. (2004). Role of hsp90 and the hsp90-binding immunophilins in signaling protein movement. Cellular Signalling, 16, 857–872.

    Article  CAS  PubMed  Google Scholar 

  • Pyatrikas, D. V., Rikhvanov, E. G., Fedoseeva, I. V., Varakina, N. N., Rusaleva, T. M., Tauson, E. L., Stepanov, A. V., Borovskii, G. B., & Voinikov, V. K. (2014). Mitochondrial retrograde regulation of HSP101 expression in Arabidopsis thaliana under heat stress and amiodarone action. Russian Journal of Plant Physiology, 61, 80–89.

    Article  CAS  Google Scholar 

  • Qi, Y., Wang, H., Zou, Y., Liu, C., Wang, Y., & Zhang, W. (2011). Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Letters, 585, 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Queitsch, C., Hong, S. W., Vierling, E., & Lindquist, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 12, 479–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy, R., Chaudhary, S., Patil, P., & Krishna, P. (1998). The 90 kDa heat shock protein (Hsp90) is expressed throughout Brassica napus seed development and germination. Plant Science, 131, 131–137.

    Article  CAS  Google Scholar 

  • Reddy, P. S., Kavi Kishor, P. B., Seiler, C., Kuhlmann, M., Eschen-Lippold, L., Lee, J., Reddy, M. K., & Sreenivasulu, N. (2014). Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: Its implications in drought stress response and seed development. PLoS One, 9, e89125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rensink, W. A., Lobst, S., Hart, A., Stegalkina, S., Liu, J., & Buell, C. R. (2005). Gene expression profiling of potato responses to cold, heat, and salt stress. Functional & Integrative Genomics, 5, 201–207.

    Article  CAS  Google Scholar 

  • Rinalducci, S., Egidi, M. G., Mahfoozi, S., Godehkahriz, S. J., & Zolla, L. (2011). The influence of temperature on plant development in a vernalization-requiring winter wheat: A 2-DE based proteomic investigation. Journal of Proteomics, 74, 643–659.

    Article  CAS  PubMed  Google Scholar 

  • Ristic, Z., Gifford, D. J., & Cass, D. D. (1991). Heat shock proteins in two lines of Zea mays L. that differ in drought and heat resistance. Plant Physiology, 97, 1430–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky, L., Liang, H., & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130, 1143–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J. and von Korff M. (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany 64, 3201–3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossel, J. B., Wilson, I. W., & Pogson, B. J. (2002). Global changes in gene expression in response to high light in Arabidopsis. Plant Physiology, 130, 1109–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozenzvieg, D., Elmaci, C., Samach, A., Lurie, S., & Porat, R. (2004). Isolation of four heat shock protein cDNAs from grapefruit peel tissue and characterization of their expression in response to heat and chilling temperature stresses. Physiologia Plantarum, 121, 421–428.

    Article  CAS  Google Scholar 

  • Ruibal, C., Castro, A., Carballo, V., Szabados, L., & Vidal, S. (2013). Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4. BMC Plant Biology, 13, 174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabehat, A., Lurie, S., & Weiss, D. (1998). Expression of small heat-shock proteins at low temperatures: A possible role in protecting against chilling injuries. Plant Physiology, 117, 651–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Bel, P., Egea, I., Sanchez-Ballesta, M. T., Sevillano, L., del Carmen Bolarin, M., & Flores, F. B. (2012). Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. Plant & Cell Physiology, 53, 470–484.

    Article  CAS  Google Scholar 

  • Sarkar, N. K., Kim, Y. K., & Grover, A. (2009). Rice sHsp genes: Genomic organization and expression profiling under stress and development. BMC Genomics, 10, 393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarry, J. E., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V., Jourdain, A., Bastien, O., Fievet, J. B., Vailhen, D., Amekraz, B., Moulin, C., Ezan, E., Garin, J., & Bourguignon, J. (2006). The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 6, 2180–2198.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., & Yokoya, S. (2008). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Reports, 27, 329–334.

    Article  CAS  PubMed  Google Scholar 

  • Scarpeci, T. E., Zanor, M. I., & Valle, E. M. (2008). Investigating the role of plant heat shock proteins during oxidative stress. Plant Signaling & Behavior, 3, 856–857.

    Article  Google Scholar 

  • Schöffl, F., Prändl, R., & Reindl, A. (1999). Molecular responses to heat stress. In Molecular responses to cold, drought, heat and salt stress in higher plants (Vol. 1). Texas: Biotechnology intelligence unit.

    Google Scholar 

  • Schroda, M., Vallon, V., Wlollman, F., & Beck, C. F. (1999). A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell, 11, 11165–11178.

    Article  Google Scholar 

  • Shekhar, S., Mishra, D., Gayali, S., Buragohain, A. K., Chakraborty, S., & Chakraborty, N. (2016). Comparison of proteomic and metabolomic profiles of two contrasting ecotypes of sweetpotato (Ipomoea batata L.) Journal of Proteomics, 143, 306–317.

    Article  CAS  PubMed  Google Scholar 

  • Siddique, M., Gernhard, S., von Koskull-Döring P, ., Vierling, E. and Scharf, K. D. (2008) The plant sHSP superfamily: Five new members in Arabidopsis thaliana with unexpected properties. Cell Stress & Chaperones 13, 183–197.

    Article  CAS  Google Scholar 

  • Singh, A., Singh, U., Mittal, D., & Grover, A. (2010). Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genomics, 11, 95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, R. K., Jaishankar, J., Muthamilarasan, M., Shweta, S., Dangi, A., & Prasad, M. (2016). Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Scientific Reports, 6, 32641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla, S. L., Pareek, A., & Grover, A. (1997). Yeast HSP104 homologue rice HSP110 is developmentally- and stress-regulated. Plant Science, 125, 211–219.

    Article  CAS  Google Scholar 

  • Singla, S. L., Pareek, A., & Grover, A. (1998). Plant Hsp100 family with special reference to rice. Journal of Biosciences, 23, 337–345.

    Article  CAS  Google Scholar 

  • Soll, J. (2002). Protein import into chloroplasts. Current Opinion in Plant Biology, 5, 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Song, H., Fan, P., & Li, Y. (2009a). Overexpression of organellar and cytosolic AtHSP90 in Arabidopsis thaliana impairs plant tolerance to oxidative stress. Plant Molecular Biology Reporter, 27, 342–349.

    Article  CAS  Google Scholar 

  • Song, H., Zhao, R., Fan, P., Wang, X., Chen, X., & Li, Y. (2009b). Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta, 229, 955–964.

    Article  CAS  PubMed  Google Scholar 

  • Song, H. M., Wang, H. Z., & Xu, X. B. (2012). Overexpression of AtHsp90.3 in Arabidopsis thaliana impairs plant tolerance to heavy metal stress. Biologia Plantarum, 56, 197–199.

    Article  CAS  Google Scholar 

  • Soto, A., Allona, I., Collada, C., Guevara, M., Casado, R., Emilio, R., Aragoncillo, C., & Gomez, L. (1999). Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiology, 120, 521–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, P. H., & Li, H. M. (2008). Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiology, 146, 1231–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subba, P., Barua, P., Kumar, R., Data, A., Soni, K. K., Chakraborty, S., & Chakraborty, N. (2013a). Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. Journal of Proteome Research, 12, 5025–5047.

    Article  CAS  PubMed  Google Scholar 

  • Subba, P., Kumar, R., Gayali, S., Shekhar, S., Parveen, S., Pandey, A., Data, A., Chakraborty, S., & Chakraborty, N. (2013b). Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics, 13, 1973–1992.

    Article  CAS  PubMed  Google Scholar 

  • Sugino, M., Hibino, T., Tanaka, Y., Nii, N., & Takabe, T. (1999). Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytic acquires resistance to salt stress in transgenic tobacco plants. Plant Science, 146, 81–88.

    Article  CAS  Google Scholar 

  • Süle, A., Vanrobaeys, F., Hajós, G., Van Beeumen, J., & Devreese, B. (2004). Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry, 65, 1853–1863.

    Article  PubMed  CAS  Google Scholar 

  • Sun, W., Bernard, C., Van de Cotte, B., Van Montagu, M., & Verbruggen, N. (2001). At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal, 27, 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J. H., Chen, J. Y., Kuang, J., Chen, W., & Lu, W. (2010). Expression of sHSP genes as affected by heat shock and cold acclimation in relation to chilling tolerance in plum fruit. Postharvest Biology and Technology, 55, 91–96.

    Article  CAS  Google Scholar 

  • Sung, D. Y., Vierling, E., & Guy, C. L. (2001). Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiology, 126, 789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swindell, W. R., Huebner, M., & Weber, A. P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 8, 125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talamè, V., Ozturk, N. Z., Bohnert, H. J., & Tuberosa, R. (2007). Barley transcript profiles under dehydration shock and drought stress treatments: A comparative analysis. Journal of Experimental Botany, 58, 229–240.

    Article  PubMed  Google Scholar 

  • Thao, N. P., Chen, L., Nakashima, A., Hara, S., Umemura, K., Takahashi, A., Shirasu, K., Kawasaki, T., & Shimamoto, K. (2007). RAR1 and HSP90 form a complex with Rac/Rop GTPase and function2 in innate-immune responses in rice. Plant Cell, 19, 4035–4045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 579–620.

    Article  CAS  Google Scholar 

  • Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16, 123–132.

    Article  CAS  PubMed  Google Scholar 

  • Vítámvás, P., Prášil, I. T., Kosová, K., Planchon, S., & Renaut, J. (2012). Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics, 12, 68–85.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heatshock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Wang, A., Yu, X., Mao, Y., Liu, Y., Liu, G., Liu, Y., & Niu, X. (2015). Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice. Plant Breeding, 134, 384–393.

    Article  CAS  Google Scholar 

  • Wang, J., Yu, Q., Xiong, H., Wang, J., Chen, S., Yang, Z., & Dai, S. (2016). Proteomic insight into the response of Arabidopsis chloroplasts to darkness. PLoS One, 11, e0154235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, M., Zou, Z., Li, Q., Sun, K., Chen, X., & Li, X. (2017). The CsHSP17.2 molecular chaperone is essential for thermotolerance in Camellia Sinensis. Scientific Reports, 7(1237).

    Google Scholar 

  • Waters, E. R. (2013). The evolution, function, structure, and expression of the plant sHSPs. Journal of Experimental Botany, 64, 391–403.

    Article  CAS  PubMed  Google Scholar 

  • Waters, E. R., Lee, G. J., & Vierling, E. (1996). Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany, 47, 325–338.

    Article  CAS  Google Scholar 

  • Waters, E. R., Lee, G. J., & Vierling, E. (2013). Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany, 47, 325–338.

    Article  Google Scholar 

  • Xu, C., & Huang, B. (2010). Comparative analysis of drought responsive proteins in kentucky bluegrass cultivars contrasting in drought tolerance. Crop Science, 50, 2543–2552.

    Article  Google Scholar 

  • Xu, X. B., Song, H. M., Zhou, Z. H., Shi, N. N., Ying, Q. C., & Wang, H. Z. (2010). Functional characterization of AtHsp90.3 in Saccharomyces cerevisiae and Arabidopsis thaliana under heat stress. Biotechnology Letters, 32, 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Zhan, C., & Huang, B. (2011). Heat shock proteins in association with heat tolerance in grasses. International Journal of Proteomics, 2011(529648).

    Article  CAS  Google Scholar 

  • Xu, J., Xue, C., Xue, D., Zhao, J., Gai, J., Guo, N., & Xing, H. (2013). Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS One, 8, e69810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, K., Fukao, Y., Hayashi, M., Fukazawa, M., Suzuki, I., & Nishimura, M. (2007). Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. The Journal of Biological Chemistry, 282, 37794–37804.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Li, X., Yang, S., Zhou, Y., Dong, C., Ren, J., Sun, X., & Yang, Y. (2015). Comparative physiological and proteomic analysis reveals the leaf response to cadmium-induced stress in poplar (Populus yunnanensis). PLoS One, 10, e0137396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young, T. E., Ling, J., Geisler-Lee, C. J., Tanguay, R. L., Caldwell, C., & Gallie, D. R. (2001). Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiology, 127, 777–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, L. W., Wilen, R. W., & Bonham-Smith, P. C. (2004). High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany, 55, 485–495.

    Article  CAS  PubMed  Google Scholar 

  • Yu, A., Li, P., Tang, T., Wang, J., Chen, Y., & Liu, L. (2015). Roles of Hsp70s in stress responses of microorganisms, plants, and animals. BioMed Research International, 2015, 1–8.

    Google Scholar 

  • Yu, J., Cheng, Y., Feng, K., Ruan, M., Ye, Q., Wang, R., Li, Z., Zhou, G., Yao, Z., Yang, Y., & Wan, H. (2016). Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. Frontiers in Plant Science, 7, 1215.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Yu, Z., Jiang, L., Jiang, J., Luo, H., & Fu, L. (2011). Effect of post-harvest heat treatment on proteome change of peach fruit during ripening. Journal of Proteomics, 74, 1135–1149.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Xu, L., Zhu, X., Gong, Y., Xiang, F., Sun, X., & Liu, L. (2013). Proteomic analysis of heat stress response in leaves of radish (Raphanus sativus L.) Plant Molecular Biology Reporter, 31, 195–203.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhang, Q., Gao, Y., Pan, H., Shi, S., & Wang, Y. (2014a). Overexpression of heat shock protein gene PfHSP21.4 in Arabidopsis thaliana enhances heat tolerance. Acta Physiologiae Plantarum, 36, 1555–1564.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, M., & Zhang, Q. (2014b). Proteomic analysis of the heat stress response in leaves of two contrasting chrysanthemum varieties. Plant OMICS, 7, 229–232.

    Google Scholar 

  • Zhang, Y., Pan, J., Huang, X., Guo, D., Lou, H., Hou, Z., Su, M., Liang, R., Xie, C., Mingshan You, M., & Li, B. (2017). Differential effects of a post-anthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ. Scientific Reports, 7, 3468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou, J., Liu, C., Liu, A., Zou, D., & Chen, X. (2012). Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. Journal of Plant Physiology, 169, 628–635.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Chen, H., Chu, P., Li, Y., Tan, B., Ding, Y., Tsang, E. W. T., Jiang, L., Wu, K., & Huang, S. (2012). NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Reports, 31, 379–389.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Plant Genome Research (NIPGR). We kindly acknowledge the University Grant Commission (UGC), Govt. of India for providing predoctoral fellowship to D.M, Department of Biotechnology (DBT), Govt. of India for providing predoctoral fellowship to D.S., and DST-SERB for providing postdoctoral fellowship to S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, D., Shekhar, S., Singh, D., Chakraborty, S., Chakraborty, N. (2018). Heat Shock Proteins and Abiotic Stress Tolerance in Plants. In: Asea, A., Kaur, P. (eds) Regulation of Heat Shock Protein Responses. Heat Shock Proteins, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-74715-6_3

Download citation

Publish with us

Policies and ethics