Advertisement

Geroscience From Cell-body Dynamics and Proteostasis Cooperation Supported by αB-crystallin and Human will ~ A Proposal of “Body-Mind Integrative Science”

  • Yoriko Atomi
  • Miho Shimizu
  • Eri Ohto-Fujita
  • Aya Atomi
  • Saaya Hayasaki
  • Yoshikazu Higashi
  • Tomoaki Atomi
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 13)

Abstract

The importance of small heat shock protein HSP in geroscience is increasing. We believe that research progress from life science should contribute to well-being. Molecular chaperone studies are considered superior when performed on model substrates and model animals. However, by itself, concrete measures for extending the healthy life of human beings are not provided. It is important to analyze the cell-animal-human results, interpret the relationship, and promote comprehensively studied HSP research. αB-crystallin (CRYAB) was identified for key molecule to explain the mechanism of exercise adaptation of slow-twitch muscle for a long ago. It is only human beings that stand up against gravity and move all day in their standing position. With CRYAB and tubulin/microtubule as a key word, we will introduce the principle of clarifying not only cells but also how to control the human body. Mechanistically fiber structure produced after protein assembly has not only multifunction but also is available as materials to make “body” and can sustain body weight by tension development at both micro- and macro-levels. This links cell’s autonomous regulating ability and human will to keep standing. This manuscript may contribute to develop a new direction of HSP Geroscience research proposing real program to healthy aging and mature human world.

Keywords

αB-Crystallin (CRYAB) Cytoskeleton Dynamic Instability Heat Shock Protein Mechanical Stress Bipedal standing 

Abbreviations

CRYAB

αB-crystallin

ECM

Extracellular matrix

FRAP

Fluorescence recovery after photobleaching

FRET

Fluorescence resonance energy transfer

Hsp

Heat shock protein

HSP

Heat shock protein family

MAP

Microtubule-associated protein

MT

Microtubule

Notes

Acknowledgements

The works described here were partially supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, Research grant from Japan Space Utilization Promotion Center, and Research grant from Japan Space Forum.

References

  1. Ahrman, E., Lambert, W., Aquilina, J. A., Robinson, C. V., & Emanuelsson, C. S. (2007). Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Science, 16, 1464–1478.  https://doi.org/10.1110/ps.072831607 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arac, A., Brownell, S. E., Rothbard, J. B., Chen, C., Ko, R. M., Pereira, M. P., Albers, G. W., Steinman, L., & Steinberg, G. K. (2011). Systemic augmentation of alphaB-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proceedings of the National Academy of Sciences of the United States of America, 108, 13287–13292.  https://doi.org/10.1073/pnas.1107368108 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arai, H., & Atomi, Y. (1997). Chaperone activity of alpha B-crystallin suppresses tubulin aggregation through complex formation. Cell Structure and Function, 22, 539–544.CrossRefGoogle Scholar
  4. Arany, Z., Wagner, B. K., Ma, Y., Chinsomboon, J., Laznik, D., & Spiegelman, B. M. (2008). Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1alpha and oxidative phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105, 4721–4726.  https://doi.org/10.1073/pnas.0800979105 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arrigo, A. P. (2013). Human small heat shock proteins: Protein interactomes of homo- and hetero-oligomeric complexes: An update. FEBS Letters, 587, 1959–1969.  https://doi.org/10.1016/j.febslet.2013.05.011 CrossRefPubMedGoogle Scholar
  6. Atomi, Y. (2012). Innovative science and education for understanding “Life” systems. Trends In The Sciences, 17(6), 86–93.  https://doi.org/10.5363/tits.17.6_86 CrossRefGoogle Scholar
  7. Atomi, Y. (2015). Gravitational effects on human physiology. Sub-Cellular Biochemistry, 72, 627–659.  https://doi.org/10.1007/978-94-017-9918-8_29 CrossRefPubMedGoogle Scholar
  8. Atomi, Y., & Miyashita, M. (1974). Maximal aerobic power of Japanese active and sedentary adult females of different ages (20 to 62 years). Medicine and Science in Sports, 6, 223–225.PubMedGoogle Scholar
  9. Atomi, Y., & Miyashita, M. (1980). Effect of training intensity in adult females. European Journal of Applied Physiology and Occupational Physiology, 44, 109–116.CrossRefGoogle Scholar
  10. Atomi, Y., Iwaoka, K., Hatta, H., Miyashita, M., & Yamamoto, Y. (1986). Daily physical activity levels in preadolescent boys related to VO2max and lactate threshold. European Journal of Applied Physiology and Occupational Physiology, 55, 156–161.CrossRefGoogle Scholar
  11. Atomi, Y., Fukunaga, T., Hatta, H., & Yamamoto, Y. (1987). elationship between lactate threshold during running and relative gastrocnemius area. Journal of Applied Physiology, 1985(63), 2343–2347.CrossRefGoogle Scholar
  12. Atomi, Y., Yamada, S., & Hong, Y.-M. (1990). Dynamic expression of αB-Crystallin in skeletal muscle Effects of Unweighting, Passive Stretch and Denervation. Proceedings of the Japan Academy, Series B, 66, 203–208.  https://doi.org/10.2183/pjab.66.203 CrossRefGoogle Scholar
  13. Atomi, Y., Yamada, S., & Nishida, T. (1991a). Early changes of alpha B-crystallin mRNA in rat skeletal muscle to mechanical tension and denervation. Biochemical and Biophysical Research Communications, 181, 1323–1330.CrossRefGoogle Scholar
  14. Atomi, Y., Yamada, S., Strohman, R., & Nonomura, Y. (1991b). Alpha B-crystallin in skeletal muscle: Purification and localization. Journal of Biochemistry, 110, 812–822.CrossRefGoogle Scholar
  15. Atomi, Y., Toro, K., Masuda, T., & Hatta, H. (2000). Fiber-type-specific alphaB-crystallin distribution and its shifts with T(3) and PTU treatments in rat hindlimb muscles. Journal of Applied Physiology, 1985(88), 1355–1364.CrossRefGoogle Scholar
  16. Atomi, T., Noriuchi, M., Oba, K., Atomi, Y., & Kikuchi, Y. (2014). Self-recognition of one’s own fall recruits the genuine bodily crisis-related brain activity. PLoS One, 9, e115303.  https://doi.org/10.1371/journal.pone.0115303 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bagneris, C., Bateman, O. A., Naylor, C. E., Cronin, N., Boelens, W. C., Keep, N. H., & Slingsby, C. (2009). Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. Journal of Molecular Biology, 392, 1242–1252.  https://doi.org/10.1016/j.jmb.2009.07.069.CrossRefPubMedGoogle Scholar
  18. Barnes, S., & Quinlan, R. A. (2017). Small molecules, both dietary and endogenous, influence the onset of lens cataracts. Experimental Eye Research, 156, 87–94.  https://doi.org/10.1016/j.exer.2016.03.024 CrossRefPubMedGoogle Scholar
  19. Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M. C., Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P., & Canaider, S. (2013). An estimation of the number of cells in the human body. Annals of Human Biology, 40, 463–471.  https://doi.org/10.3109/03014460.2013.807878 CrossRefPubMedGoogle Scholar
  20. Brady, J. P., Garland, D. L., Green, D. E., Tamm, E. R., Giblin, F. J., & Wawrousek, E. F. (2001). AlphaB-crystallin in lens development and muscle integrity: A gene knockout approach. Investigative Ophthalmology & Visual Science, 42, 2924–2934.Google Scholar
  21. Bramble, D. M., & Lieberman, D. E. (2004). Endurance running and the evolution of homo. Nature, 432, 345–352.  https://doi.org/10.1038/nature03052 CrossRefPubMedGoogle Scholar
  22. Bullard, B., Ferguson, C., Minajeva, A., Leake, M. C., Gautel, M., Labeit, D., Ding, L., Labeit, S., Horwitz, J., Leonard, K. R., & Linke, W. A. (2004). Association of the chaperone alphaB-crystallin with titin in heart muscle. The Journal of Biological Chemistry, 279, 7917–7924.  https://doi.org/10.1074/jbc.M307473200 CrossRefPubMedGoogle Scholar
  23. Courtine, G., Song, B., Roy, R. R., Zhong, H., Herrmann, J. E., Ao, Y., Qi, J., Edgerton, V. R., & Sofroniew, M. V. (2008). Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nature Medicine, 14, 69–74.  https://doi.org/10.1038/nm1682 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Datskevich, P. N., Mymrikov, E. V., & Gusev, N. B. (2012). Utilization of fluorescent chimeras for investigation of heterooligomeric complexes formed by human small heat shock proteins. Biochimie, 94, 1794–1804.  https://doi.org/10.1016/j.biochi.2012.04.012 CrossRefPubMedGoogle Scholar
  25. de Jong, W. W., Leunissen, J. A., & Voorter, C. E. (1993). Evolution of the alpha-crystallin/small heat-shock protein family. Molecular Biology and Evolution, 10, 103–126.PubMedGoogle Scholar
  26. Delbecq, S. P., Jehle, S., & Klevit, R. (2012). Binding determinants of the small heat shock protein, alphaB-crystallin: Recognition of the ‘IxI’ motif. The EMBO Journal, 31, 4587–4594.  https://doi.org/10.1038/emboj.2012.318 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Duennwald, M. L., Echeverria, A., & Shorter, J. (2012). Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biology, 10, e1001346.  https://doi.org/10.1371/journal.pbio.1001346 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Eyles, S. J., & Gierasch, L. M. (2010). Nature’s molecular sponges: Small heat shock proteins grow into their chaperone roles. Proceedings of the National Academy of Sciences of the United States of America, 107, 2727–2728.  https://doi.org/10.1073/pnas.0915160107 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fujita, Y., Ohto, E., Katayama, E., & Atomi, Y. (2004). alphaB-Crystallin-coated MAP microtubule resists nocodazole and calcium-induced disassembly. Journal of Cell Science, 117, 1719–1726.  https://doi.org/10.1242/jcs.01021 CrossRefPubMedGoogle Scholar
  30. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., & Yanagida, T. (1995). Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature, 374, 555–559.  https://doi.org/10.1038/374555a0 CrossRefPubMedGoogle Scholar
  31. Goodsell, D. S. (1991). Inside a living cell. Trends in Biochemical Sciences, 16, 203–206.CrossRefGoogle Scholar
  32. Gundersen, G. G., & Cook, T. A. (1999). Microtubules and signal transduction. Current Opinion in Cell Biology, 11, 81–94.CrossRefGoogle Scholar
  33. Haslbeck, M., & Vierling, E. (2015). A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. Journal of Molecular Biology, 427, 1537–1548.  https://doi.org/10.1016/j.jmb.2015.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haslbeck, M., Braun, N., Stromer, T., Richter, B., Model, N., Weinkauf, S., & Buchner, J. (2004). Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. The EMBO Journal, 23, 638–649.  https://doi.org/10.1038/sj.emboj.7600080 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hatta, H., Atomi, Y., Yamamoto, Y., Shinohara, S., & Yamada, S. (1989). Incorporation of blood lactate and glucose into tissues in rats after short-term strenuous exercise. International Journal of Sports Medicine, 10, 275–278.  https://doi.org/10.1055/s-2007-1024915 CrossRefPubMedGoogle Scholar
  36. Hayashi, I., Vuori, K., & Liddington, R. C. (2002). The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nature Structural Biology, 9, 101–106.  https://doi.org/10.1038/nsb755 CrossRefPubMedGoogle Scholar
  37. Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 279, 519–526.CrossRefGoogle Scholar
  38. Hochberg, G. K., Ecroyd, H., Liu, C., Cox, D., Cascio, D., Sawaya, M. R., Collier, M. P., Stroud, J., Carver, J. A., Baldwin, A. J., Robinson, C. V., Eisenberg, D. S., Benesch, J. L., & Laganowsky, A. (2014). The structured core domain of alphaB-crystallin can prevent amyloid fibrillation and associated toxicity. Proceedings of the National Academy of Sciences of the United States of America, 111, E1562–E1570.  https://doi.org/10.1073/pnas.1322673111 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Houck, S. A., & Clark, J. I. (2010). Dynamic subunit exchange and the regulation of microtubule assembly by the stress response protein human alphaB crystallin. PLoS One, 5, e11795.  https://doi.org/10.1371/journal.pone.0011795 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hsu, A. L., Murphy, C. T., & Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 300, 1142–1145.  https://doi.org/10.1126/science.1083701 CrossRefPubMedGoogle Scholar
  41. Huang, Y., Wang, Z., Liu, Y., Xiong, H., Zhao, Y., Wu, L., Yuan, C., Wang, L., Hou, Y., Yu, G., Huang, Z., Xu, C., Chen, Q., & Wang, Q. K. (2016). alphaB-Crystallin interacts with Nav1.5 and regulates ubiquitination and internalization of cell surface Nav1.5. The Journal of Biological Chemistry, 291, 11030–11041.  https://doi.org/10.1074/jbc.M115.695080 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ikeda, N., Saito, E., Kondo, N., Inoue, M., Ikeda, S., Satoh, T., Wada, K., Stickley, A., Katanoda, K., Mizoue, T., Noda, M., Iso, H., Fujino, Y., Sobue, T., Tsugane, S., Naghavi, M., Ezzati, M., & Shibuya, K. (2011). What has made the population of Japan healthy? Lancet, 378, 1094–1105.  https://doi.org/10.1016/S0140-6736(11)61055-6 CrossRefPubMedGoogle Scholar
  43. Ishihara, K., Nguyen, P. A., Groen, A. C., Field, C. M., & Mitchison, T. J. (2014). Microtubule nucleation remote from centrosomes may explain how asters span large cells. Proceedings of the National Academy of Sciences of the United States of America, 111, 17715–17722.  https://doi.org/10.1073/pnas.1418796111 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ito, H., Okamoto, K., Nakayama, H., Isobe, T., & Kato, K. (1997). Phosphorylation of alphaB-crystallin in response to various types of stress. The Journal of Biological Chemistry, 272, 29934–29941.CrossRefGoogle Scholar
  45. Jaya, N., Garcia, V., & Vierling, E. (2009). Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proceedings of the National Academy of Sciences of the United States of America, 106, 15604–15609.  https://doi.org/10.1073/pnas.0902177106 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jee, H., Sakurai, T., Kawada, S., Ishii, N., & Atomi, Y. (2009). Significant roles of microtubules in mature striated muscle deduced from the correlation between tubulin and its molecular chaperone alphaB-crystallin in rat muscles. The Journal of Physiological Sciences, 59, 149–155.  https://doi.org/10.1007/s12576-008-0014-6 CrossRefPubMedGoogle Scholar
  47. Jehle, S., Rajagopal, P., Bardiaux, B., Markovic, S., Kuhne, R., Stout, J. R., Higman, V. A., Klevit, R. E., van Rossum, B. J., & Oschkinat, H. (2010). Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nature Structural & Molecular Biology, 17, 1037–1042.  https://doi.org/10.1038/nsmb.1891 CrossRefGoogle Scholar
  48. Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., Cheetham, M. E., Chen, B., & Hightower, L. E. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.  https://doi.org/10.1007/s12192-008-0068-7 CrossRefGoogle Scholar
  49. Kappe, G., Leunissen, J. A., & de Jong, W. W. (2002). Evolution and diversity of prokaryotic small heat shock proteins. Progress in Molecular and Subcellular Biology, 28, 1–17.CrossRefGoogle Scholar
  50. Kato, K., Goto, S., Inaguma, Y., Hasegawa, K., Morishita, R., & Asano, T. (1994). Purification and characterization of a 20-kDa protein that is highly homologous to alpha B crystallin. The Journal of Biological Chemistry, 269, 15302–15309.PubMedGoogle Scholar
  51. Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., Epel, E. S., Franceschi, C., Lithgow, G. J., Morimoto, R. I., Pessin, J. E., Rando, T. A., Richardson, A., Schadt, E. E., Wyss-Coray, T., & Sierra, F. (2014). Geroscience: Linking aging to chronic disease. Cell, 159, 709–713.  https://doi.org/10.1016/j.cell.2014.10.039 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kenyon, C., Chang, J., Gensch, E., Rudner, A., & Tabtiang, R. (1993). A C. Elegans mutant that lives twice as long as wild type. Nature, 366, 461–464.  https://doi.org/10.1038/366461a0 CrossRefPubMedGoogle Scholar
  53. Kim, K. K., Kim, R., & Kim, S. H. (1998). Crystal structure of a small heat-shock protein. Nature, 394, 595–599.  https://doi.org/10.1038/29106 CrossRefPubMedGoogle Scholar
  54. Kim, S. G., Akaike, T., Sasagaw, T., Atomi, Y., & Kurosawa, H. (2002). Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Structure and Function, 27, 139–144.CrossRefGoogle Scholar
  55. Koh, T. J., & Escobedo, J. (2004). Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions. American Journal of Physiology. Cell Physiology, 286, C713–C722.  https://doi.org/10.1152/ajpcell.00341.2003 CrossRefPubMedGoogle Scholar
  56. Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M., & Buchner, J. (2010). Independent evolution of the core domain and its flanking sequences in small heat shock proteins. The FASEB Journal, 24, 3633–3642.  https://doi.org/10.1096/fj.10-156992 CrossRefPubMedGoogle Scholar
  57. Kuipers, H. F., Yoon, J., van Horssen, J., Han, M. H., Bollyky, P. L., Palmer, T. D., & Steinman, L. (2017). Phosphorylation of alphaB-crystallin supports reactive astrogliosis in demyelination. Proceedings of the National Academy of Sciences of the United States of America, 114, E1745–E1754.  https://doi.org/10.1073/pnas.1621314114 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Laganowsky, A., Benesch, J. L., Landau, M., Ding, L., Sawaya, M. R., Cascio, D., Huang, Q., Robinson, C. V., Horwitz, J., & Eisenberg, D. (2010). Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Science, 19, 1031–1043.  https://doi.org/10.1002/pro.380 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Liu, Y., & Steinacker, J. M. (2001). Changes in skeletal muscle heat shock proteins: Pathological significance. Frontiers in Bioscience, 6, D12–D25.PubMedGoogle Scholar
  60. Locke, M., & Noble, E. G. (1995). Stress proteins: The exercise response. Canadian Journal of Applied Physiology, 20, 155–167.CrossRefGoogle Scholar
  61. Mainz, A., Peschek, J., Stavropoulou, M., Back, K. C., Bardiaux, B., Asami, S., Prade, E., Peters, C., Weinkauf, S., Buchner, J., & Reif, B. (2015). The chaperone alphaB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nature Structural & Molecular Biology, 22, 898–905.  https://doi.org/10.1038/nsmb.3108 CrossRefGoogle Scholar
  62. Manenti, S., Dunia, I., & Benedetti, E. L. (1990). Fatty acid acylation of lens fiber plasma membrane proteins. MP26 and alpha-crystallin are palmitoylated. FEBS Letters, 262, 356–358.CrossRefGoogle Scholar
  63. Maruyama, K. (1976). Connectin, an elastic protein from myofibrils. Journal of Biochemistry, 80, 405–407.CrossRefGoogle Scholar
  64. McGreal, R. S., Kantorow, W. L., Chauss, D. C., Wei, J., Brennan, L. A., & Kantorow, M. (2012). AlphaB-crystallin/sHSP protects cytochrome c and mitochondrial function against oxidative stress in lens and retinal cells. Biochimica et Biophysica Acta, 1820, 921–930.  https://doi.org/10.1016/j.bbagen.2012.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  65. McHaourab, H. S., Godar, J. A., & Stewart, P. L. (2009). Structure and mechanism of protein stability sensors: Chaperone activity of small heat shock proteins. Biochemistry, 48, 3828–3837.  https://doi.org/10.1021/bi900212j CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312, 237–242.CrossRefGoogle Scholar
  67. Mitchison, T. J., & Kirschner, M. W. (1985). Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. The Journal of Cell Biology, 101, 766–777.CrossRefGoogle Scholar
  68. Morimoto, R. I. (2008). Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes & Development, 22, 1427–1438.  https://doi.org/10.1101/gad.1657108 CrossRefGoogle Scholar
  69. Morner, C. T. (1894). Untersuchung der Proteinsubstanzen in den lichtbrechenden Medien des Auges (Examination of the protein-substances in the refractory media of the eye). Hoppe-Seyler’s Zeitschrift für Physiologische Chemie, 18, 61–106.Google Scholar
  70. Morrow, G., & Tanguay, R. M. (2012). Small heat shock protein expression and functions during development. The International Journal of Biochemistry & Cell Biology, 44, 1613–1621.  https://doi.org/10.1016/j.biocel.2012.03.009 CrossRefGoogle Scholar
  71. Mymrikov, E. V., Daake, M., Richter, B., Haslbeck, M., & Buchner, J. (2017). The chaperone activity and substrate Spectrum of human small heat shock proteins. The Journal of Biological Chemistry, 292, 672–684.  https://doi.org/10.1074/jbc.M116.760413 CrossRefPubMedGoogle Scholar
  72. Ohkawa, T., Atomi, T., Hasegawa, K., & Atomi, Y. (2017). The free moment is associated with torsion between the pelvis and the foot during gait. Gait & Posture, 58, 415–420.  https://doi.org/10.1016/j.gaitpost.2017.09.002 CrossRefGoogle Scholar
  73. Ohto-Fujita, E., Fujita, Y., & Atomi, Y. (2007). Analysis of the alphaB-crystallin domain responsible for inhibiting tubulin aggregation. Cell Stress & Chaperones, 12, 163–171.CrossRefGoogle Scholar
  74. Patel, S., Vierling, E., & Tama, F. (2014). Replica exchange molecular dynamics simulations provide insight into substrate recognition by small heat shock proteins. Biophysical Journal, 106, 2644–2655.  https://doi.org/10.1016/j.bpj.2014.04.048 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pereira, M. B., Santos, A. M., Goncalves, D. C., Cardoso, A. C., Consonni, S. R., Gozzo, F. C., Oliveira, P. S., Pereira, A. H., Figueiredo, A. R., Tiroli-Cepeda, A. O., Ramos, C. H., de Thomaz, A. A., Cesar, C. L., & Franchini, K. G. (2014). AlphaB-crystallin interacts with and prevents stress-activated proteolysis of focal adhesion kinase by calpain in cardiomyocytes. Nature Communications, 5, 5159.  https://doi.org/10.1038/ncomms6159 CrossRefPubMedGoogle Scholar
  76. Prosser, S. L., & Pelletier, L. (2017). Mitotic spindle assembly in animal cells: A fine balancing act. Nature Reviews. Molecular Cell Biology, 18, 187–201.  https://doi.org/10.1038/nrm.2016.162 CrossRefPubMedGoogle Scholar
  77. Quinlan, R. (2002). Cytoskeletal competence requires protein chaperones. In M. W. E. G. Arrigo (Ed.), Small Stress Proteins (pp. 219–233). AP.CrossRefGoogle Scholar
  78. Ralston, E., Lu, Z., & Ploug, T. (1999). The organization of the Golgi complex and microtubules in skeletal muscle is fiber type-dependent. The Journal of Neuroscience, 19, 10694–10705.CrossRefGoogle Scholar
  79. Raman, B., Ban, T., Sakai, M., Pasta, S. Y., Ramakrishna, T., Naiki, H., Goto, Y., & Rao Ch, M. (2005). AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin. The Biochemical Journal, 392, 573–581.  https://doi.org/10.1042/BJ20050339 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ray, P. S., Martin, J. L., Swanson, E. A., Otani, H., Dillmann, W. H., & Das, D. K. (2001). Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. The FASEB Journal, 15, 393–402.  https://doi.org/10.1096/fj.00-0199com CrossRefPubMedGoogle Scholar
  81. Ruoslahti, E. (1997). Stretching is good for a cell. Science, 276, 1345–1346.CrossRefGoogle Scholar
  82. Sakurai, T., Fujita, Y., Ohto, E., Oguro, A., & Atomi, Y. (2005). The decrease of the cytoskeleton tubulin follows the decrease of the associating molecular chaperone alphaB-crystallin in unloaded soleus muscle atrophy without stretch. The FASEB Journal, 19, 1199–1201.  https://doi.org/10.1096/fj.04-3060fje CrossRefPubMedGoogle Scholar
  83. Seevaratnam, R., Patel, B. P., & Hamadeh, M. J. (2009). Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays. Journal of Biochemistry, 145, 791–797.  https://doi.org/10.1093/jb/mvp037 CrossRefPubMedGoogle Scholar
  84. Sharples, A. P., Hughes, D. C., Deane, C. S., Saini, A., Selman, C., & Stewart, C. E. (2015). Longevity and skeletal muscle mass: The role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell, 14, 511–523.  https://doi.org/10.1111/acel.12342 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Shay, J. W., & Wright, W. E. (2000). Hayflick, his limit, and cellular ageing. Nature Reviews. Molecular Cell Biology, 1, 72–76.  https://doi.org/10.1038/35036093 CrossRefPubMedGoogle Scholar
  86. Shigematsu, Y., Okamoto, H., Ichikawa, K., & Matsumoto, G. (1999). Temporal event association and output-dependent learning: A proposed scheme of neural molecular connections. Journal of Advanced Computational Intelligence, 3, 234–244.  https://doi.org/10.20965/jaciii.1999.p0234 CrossRefGoogle Scholar
  87. Shimizu, M., Tanaka, M., & Atomi, Y. (2016). Small heat shock protein alphaB-Crystallin controls shape and adhesion of glioma and myoblast cells in the absence of stress. PLoS One, 11, e0168136.  https://doi.org/10.1371/journal.pone.0168136 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Song, S., Hanson, M. J., Liu, B. F., Chylack, L. T., & Liang, J. J. (2008). Protein-protein interactions between lens vimentin and alphaB-crystallin using FRET acceptor photobleaching. Molecular Vision, 14, 1282–1287.PubMedPubMedCentralGoogle Scholar
  89. Specht, S., Miller, S. B., Mogk, A., & Bukau, B. (2011). Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces Cerevisiae. The Journal of Cell Biology, 195, 617–629.  https://doi.org/10.1083/jcb.201106037 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Sreekumar, P. G., Kannan, R., Kitamura, M., Spee, C., Barron, E., Ryan, S. J., & Hinton, D. R. (2010). alphaB crystallin is apically secreted within exosomes by polarized human retinal pigment epithelium and provides neuroprotection to adjacent cells. PLoS One, 5, e12578.  https://doi.org/10.1371/journal.pone.0012578 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Steinman, L. (2014). Immunology of relapse and remission in multiple sclerosis. Annual Review of Immunology, 32, 257–281.  https://doi.org/10.1146/annurev-immunol-032713-120227 CrossRefPubMedGoogle Scholar
  92. Tabata, I., Atomi, Y., Kanehisa, H., & Miyashita, M. (1990). Effect of high-intensity endurance training on isokinetic muscle power. European Journal of Applied Physiology and Occupational Physiology, 60, 254–258.CrossRefGoogle Scholar
  93. Tabony, J., & Job, D. (1992). Gravitational symmetry breaking in microtubular dissipative structures. Proceedings of the National Academy of Sciences of the United States of America, 89, 6948–6952.CrossRefGoogle Scholar
  94. Treweek, T. M., Rekas, A., Walker, M. J., & Carver, J. A. (2010). A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, alphaA- and alphaB-crystallin. Experimental Eye Research, 91, 691–699.  https://doi.org/10.1016/j.exer.2010.08.015 CrossRefPubMedGoogle Scholar
  95. Tsvetkova, N. M., Horvath, I., Torok, Z., Wolkers, W. F., Balogi, Z., Shigapova, N., Crowe, L. M., Tablin, F., Vierling, E., Crowe, J. H., & Vigh, L. (2002). Small heat-shock proteins regulate membrane lipid polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 99, 13504–13509.  https://doi.org/10.1073/pnas.192468399 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., Kampf, C., Sjostedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., Alm, T., Edqvist, P. H., Berling, H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J. M., Hamsten, M., von Feilitzen, K., Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., von Heijne, G., Nielsen, J., & Ponten, F. (2015). Proteomics. Tissue-based map of the human proteome. Science, 347, 1260419.  https://doi.org/10.1126/science.1260419 CrossRefGoogle Scholar
  97. Ulbricht, A., & Hohfeld, J. (2013). Tension-induced autophagy: May the chaperone be with you. Autophagy, 9, 920–922.  https://doi.org/10.4161/auto.24213 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ulbricht, A., Eppler, F. J., Tapia, V. E., van der Ven, P. F., Hampe, N., Hersch, N., Vakeel, P., Stadel, D., Haas, A., Saftig, P., Behrends, C., Furst, D. O., Volkmer, R., Hoffmann, B., Kolanus, W., & Hohfeld, J. (2013). Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Current Biology, 23, 430–435.  https://doi.org/10.1016/j.cub.2013.01.064 CrossRefPubMedGoogle Scholar
  99. Uversky, V. N., & Dunker, A. K. (2010). Understanding protein non-folding. Biochimica et Biophysica Acta, 1804, 1231–1264.  https://doi.org/10.1016/j.bbapap.2010.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  100. van den Brand, R., Heutschi, J., Barraud, Q., DiGiovanna, J., Bartholdi, K., Huerlimann, M., Friedli, L., Vollenweider, I., Moraud, E. M., Duis, S., Dominici, N., Micera, S., Musienko, P., & Courtine, G. (2012). Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science, 336, 1182–1185.  https://doi.org/10.1126/science.1217416 CrossRefPubMedGoogle Scholar
  101. Vandenburgh, H. H., Hatfaludy, S., Sohar, I., & Shansky, J. (1990). Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle. The American Journal of Physiology, 259, C232–C240.CrossRefGoogle Scholar
  102. Varlet, A. A., Fuchs, M., Luthold, C., Lambert, H., Landry, J., & Lavoie, J. N. (2017). Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress & Chaperones, 22, 553–567.  https://doi.org/10.1007/s12192-017-0780-2 CrossRefGoogle Scholar
  103. Walther, D. M., Kasturi, P., Zheng, M., Pinkert, S., Vecchi, G., Ciryam, P., Morimoto, R. I., Dobson, C. M., Vendruscolo, M., Mann, M., & Hartl, F. U. (2015). Widespread proteome remodeling and aggregation in Aging C. elegans. Cell, 161, 919–932.  https://doi.org/10.1016/j.cell.2015.03.032 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wang, K., McClure, J., & Tu, A. (1979). Titin: Major myofibrillar components of striated muscle. Proceedings of the National Academy of Sciences of the United States of America, 76, 3698–3702.CrossRefGoogle Scholar
  105. Waters, E. R. (1995). The molecular evolution of the small heat-shock proteins in plants. Genetics, 141, 785–795.PubMedPubMedCentralGoogle Scholar
  106. Waters, E. R., Lee, G. J., & Vierling, E. (1996). Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany, 47, 325–338.CrossRefGoogle Scholar
  107. Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids; A structure for deoxyribose nucleic acid. Nature, 171, 737–738.CrossRefGoogle Scholar
  108. Westerheide, S. D., & Morimoto, R. I. (2005). Heat shock response modulators as therapeutic tools for diseases of protein conformation. The Journal of Biological Chemistry, 280, 33097–33100.  https://doi.org/10.1074/jbc.R500010200 CrossRefPubMedGoogle Scholar
  109. Yamaguchi, T., Suzuki, T., Arai, H., Tanabe, S., & Atomi, Y. (2010). Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow. American Journal of Physiology. Cell Physiology, 298, C140–C148.  https://doi.org/10.1152/ajpcell.00050.2009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yoriko Atomi
    • 1
  • Miho Shimizu
    • 1
  • Eri Ohto-Fujita
    • 1
  • Aya Atomi
    • 1
  • Saaya Hayasaki
    • 1
  • Yoshikazu Higashi
    • 1
  • Tomoaki Atomi
    • 2
  1. 1.Material Health Science LaboratoryTokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.Faculty of Health Sciences, Department of Physical TherapyKyorin UniversityTokyoJapan

Personalised recommendations