Skip to main content

A Novel Genetic Algorithm Based k-means Algorithm for Cluster Analysis

  • Conference paper
  • First Online:
The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018) (AMLTA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 723))

Abstract

This paper proposed a novel genetic algorithm (GA) based k-means algorithm to perform cluster analysis. In the proposed approach, the population of GA is initialized by k-means algorithm. Then, the GA operators are applied to generate a new population. In addition, new mutation is proposed depending on the extreme points of clustering. The proposed approach is applied on a set of test problems. The results proved the superiority of the new methodology to perform cluster analysis well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Cluster Analysis, 5th edn. John Wiley & Sons Ltd., Chichester (2011)

    Book  MATH  Google Scholar 

  2. Karunakar Jureedi, N.V.V., Rosalina, K.M., Prema Kumar, N.: Clustering analysis and its application in electrical distribution system. Int. J. Electr. Electron. Comput. Syst. 1, 130–136 (2013)

    Google Scholar 

  3. Nithiyananthan, K.: Cluster analysis based fault identification data mining models for 3 phase power systems. Int. J. Innov. Sci. Res. 24, 285–292 (2016)

    Google Scholar 

  4. Singh, K., Malik, D., Sharma, N.: Evolving limitations in K-means algorithm in data mining and their removal. IJCEM Int. J. Comput. Eng. Manag. 12, 105–109 (2011)

    Google Scholar 

  5. Al Malki, A., Rizk, M.M., El-Shorbagy, M.A., Mousa, A.A.: Hybrid genetic algorithm with K-means for clustering problems. Open J. Optim. 5, 71–83 (2016)

    Article  Google Scholar 

  6. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recogn. 33, 1455–1465 (2000)

    Article  Google Scholar 

  7. El-Tarabily, M., Abdel-Kader, R., Marie, M.: A PSO-based subtractive data clustering algorithm. Int. J. Res. Comput. Sci. 3, 1–9 (2013)

    Article  Google Scholar 

  8. Liu, X., Guangdong, G., Fu, H.: An effective clustering algorithm with ant colony. J. Comput. 5, 598–605 (2010)

    Google Scholar 

  9. Wang, Y., Chen, L.: Multi-view fuzzy clustering with minimax optimization for effective clustering of data from multiple sources. Expert Syst. Appl. 1, 1–10 (2016)

    Article  Google Scholar 

  10. Ranjbar, M., Mosavi, M.R.: Simulated annealing clustering for optimum GPS satellite selection. Int. J. Comput. Sci. 9, 101–104 (2012)

    Google Scholar 

  11. Li, H., Chen, X., Wei, K.: An improved pigeon-inspired optimization for clustering analysis problems. Int. J. Comput. Intell. Appl. 16, 1–21 (2017)

    Article  Google Scholar 

  12. Chen, X., Zhou, Y., Luo, Q.: A hybrid monkey search algorithm for clustering analysis, 1–17 (2014)

    Google Scholar 

  13. Filho, J.R., Treleaven, P.C., Alippi, C.: Genetic algorithm programming environments. IEEE Comput. 27, 28–43 (1994)

    Article  Google Scholar 

  14. Alabsi, F., Naoum, R.: Comparison of selection methods and crossover operations using steady state genetic based intrusion detection system. J. Emerg. Trends Comput. Inf. Sci. 3, 1053–1058 (2012)

    Google Scholar 

  15. Mousa, A.A., El-Shorbagy, M.A.: Identifying a satisfactory operation point for fuzzy multiobjective environmental/economic dispatch problem. Am. J. Math. Comput. Model. 1, 1–14 (2016)

    Google Scholar 

  16. Farag, M.A., El-Shorbagy, M.A., El-Desoky, I.M., El-Sawy, A.A., Mousa, A.A.: Genetic algorithm based on k-means-clustering technique for multi-objective resource allocation problems. Br. J. Appl. Sci. Technol. 8, 80–96 (2015)

    Article  Google Scholar 

  17. Franti, P., Kivijarvi, J.: Randomised local search algorithm for the clustering problem. Pattern Anal. Appl. 3, 358–369 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mousa, A.A., El-Shorbagy, M.A., Farag, M.A.: K-means-clustering based evolutionary algorithm for multi-objective resource allocation problems. Appl. Math. Inf. Sci. 11, 1–12 (2017)

    Article  Google Scholar 

  19. Farag, M.A., El-Shorbagy, M.A., El-Desoky, I.M., Mousa, A.A., El-Sawy, A.A.: Binary-real coded genetic algorithm based k-Means clustering for unit commitment problem. Appl. Math. 6, 1873–1890 (2015)

    Article  Google Scholar 

  20. El-Desoky, I.M., Nasr, S.N., Hendawy, Z.M., Mousa, A.A., El-Shorbagy, M.A.: A hybrid genetic algorithm for job shop scheduling problems. Int. J. Adv. Eng. Technol. Comput. Sci. 3, 6–17 (2016)

    Google Scholar 

  21. Fränti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pattern Recogn. 39, 761–765 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. El-Shorbagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Shorbagy, M.A., Ayoub, A.Y., El-Desoky, I.M., Mousa, A.A. (2018). A Novel Genetic Algorithm Based k-means Algorithm for Cluster Analysis. In: Hassanien, A., Tolba, M., Elhoseny, M., Mostafa, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018). AMLTA 2018. Advances in Intelligent Systems and Computing, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-74690-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74690-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74689-0

  • Online ISBN: 978-3-319-74690-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics