Soft Tissue Injuries and Amputations

  • Gabriel J. Pavey
  • Benjamin K. Potter


The wars in Iraq and Afghanistan have produced a devastating but survivable injury pattern termed dismounted complex blast injury (DCBI) which is characterized by proximal lower extremity amputations and peri-pelvic trauma. The potential for massive blood loss from major vessel hemorrhage requires expedient battlefield intervention and coordinated casualty evacuation that balances aggressive debridement and soft tissue management with forward-minded action to preserve limb length and maximize function. Despite and possibly as a result of these attempts, the limbs of DCBI patients are wrought with early and late complications. Infection mitigation remains difficult despite serial debridements, early antibiosis, and delayed closures that utilize negative pressure wound dressings and antibiotic- and antifungal-impregnated cement beads. Invasive fungal infection, in particular, has high mortality and requires aggressive debridement as a lifesaving measure. Efforts to preserve amputation level necessitate novel approaches to soft tissue management to include rotational and free flaps, tissue expanders, and regenerative xenograft tissue matrices that push the limits of the orthoplastic reconstructive ladder. Heterotopic ossification is nearly ubiquitous in the residual limbs of DCBI causalities and when symptomatic can delay rehabilitation and require morbid surgery making prophylaxis a primary focus of military surgeons and scientists. While the functional outcomes of combat amputees surpass those of civilian traumatic amputees, innovative treatments such as targeted muscle reinnervation and osseointegration offer promise for those amputees who are limited by neuromas and poorly tolerated conventional prostheses. These advances may have wide-reaching clinical application beyond military treatment facilities and veteran’s hospitals to those who sustain traumatic amputations from conventional trauma, natural disaster, or terrorism.


Extremity Blast Amputation Invasive fungal infection Heterotopic ossification 


  1. 1.
    Fischer H. A Guide to U.S. Military Casualty Statistics: Operation Inherent Resolve, Operation New Dawn, Operation Iraqi Freedom, and Operation Enduring Freedom. Congressional Research Service Report November 20, 2014.Google Scholar
  2. 2.
    Belmont PJ, Owens BD, Schoenfeld AJ. Musculoskeletal injuries in Iraq and Afghanistan: epidemiology and outcomes following a decade of war. J Am Acad Orthop Surg. 2016;24(6):341–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Belmont PJ, Schoenfeld AJ, Goodman G. Epidemiology of combat wounds in Operation Iraqi Freedom and Operation Enduring Freedom: orthopaedic burden of disease. J Surg Orthop Adv. 2010;19(1):2–7.PubMedGoogle Scholar
  4. 4.
    Murray CK. Epidemiology of infections associated with combat-related injuries in Iraq and Afghanistan. J Trauma. 2008;64(3 Suppl):S232–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Calhoun JH, Murray CK, Manring M. Multidrug-resistant organisms in military wounds from Iraq and Afghanistan. Clin Orthop Relat Res. 2008;466:1356–62.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hospenthal DR, Crouch HK, English JF, Leach F, Pool J, Conger NG, Whitman TJ, Wortmann GW, Robertson JL, Murray CK. Multidrug-resistant bacterial colonization of combat-injured personnel at admission to medical centers after evacuation from Afghanistan and Iraq. J Trauma Inj Infect Crit Care. 2011;71:S52–7.CrossRefGoogle Scholar
  7. 7.
    Warkentien T, Rodriguez C, Lloyd B, et al. Invasive mold infections following combat-related injuries. Clin Infect Dis. 2012;55(11):1441–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Owens BD, Kragh JF Jr, Macaitis J, Svoboda SJ, Wenke JC. Characterization of extremity wounds in Operation Iraqi Freedom and Operation Enduring Freedom. J Orthop Trauma. 2007;21(4):254–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Belmont PJ Jr, McCriskin BJ, Hsiao MS, Burks R, Nelson KJ, Schoenfeld AJ. The nature and incidence of musculoskeletal combat wounds in Iraq and Afghanistan (2005–2009). J Orthop Trauma. 2013;27(5):e107–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Mossadegh S, Tai N, Midwinter M, Parker P. Improvised explosive device related pelvi-perineal trauma: anatomic injuries and surgical management. J Trauma Acute Care Surg. 2012;73(2 Suppl 1):S24–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Schoenfeld AJ, Dunn JC, Bader JO, Belmont PJ Jr. The nature and extent of war injuries sustained by combat specialty personnel killed and wounded in Afghanistan and Iraq, 2003–2011. J Trauma Acute Care Surg. 2013;75(2):287–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Cannon JW, Hofmann LJ, Glasgow SC, Potter BK, Rodriguez CJ, Cancio LC, Rasmussen TE, Fries CA, Davis MR, Jezior JR, Mullins RJ, Elster EA. Dismounted complex blast injuries: a comprehensive review of the modern combat experience. J Am Coll Surg. 2016;223(4):652–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Godfrey BW, Martin A, Chestovich PJ, Lee GH, Ingalls NK, Saldanha V. Patients with multiple traumatic amputations: an analysis of operation enduring freedom joint theatre trauma registry data. Injury. 2017;48(1):75–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mamczak CN, Elster EA. Complex dismounted IED blast injuries: the initial management of bilateral lower extremity amputations with and without pelvic and perineal involvement. J Surg Orthop Adv. 2012;21(1):8–14.PubMedGoogle Scholar
  15. 15.
    Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, Sebesta J, Jenkins D, Wade CE, Holcomb JB. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Investigators FLOW, Petrisor B, Sun X, Bhandari M, Guyatt G, Jeray KJ, Sprague S, Tanner S, Schemitsch E, Sancheti P, Anglen J, Tornetta P, Bosse M, Liew S, Walter S. Fluid lavage of open wounds (FLOW): a multicenter, blinded, factorial pilot trial comparing alternative irrigating solutions and pressures in patients with open fractures. J Trauma. 2011;71(3):596–606.Google Scholar
  17. 17.
    Lloyd B, Weintrob AC, Rodriguez C, et al. Effect of early screening for invasive fungal infections in U.S. service members with explosive blast injuries. Surg Infect. 2014;15:619–26.CrossRefGoogle Scholar
  18. 18.
    Rodriguez CJ, Weintrob AC, Shah J, Malone D, Dunne JR, Weisbrod AB, Lloyd BA, Warkentien TE, Murray CK, Wilkins K, Faraz S, Carson ML, Aggarwal D, Tribble DR, Infectious Disease Clinical Research Program Trauma Infectious Disease Outcomes Study Group. Risk factors associated with invasive fungal infections in combat trauma. Surg Infect. 2014;15(5):521–6.CrossRefGoogle Scholar
  19. 19.
    Lewandowski LR, Weintrob AC, Tribble DR, Rodriguez CJ, Petfield J, Lloyd BA, Murray CK, Stinner D, Aggarwal D, Shaikh F, Potter BK, Infectious Disease Clinical Research Program Trauma Infectious Disease Outcomes Study Group. Early complications and outcomes in combat injury-related invasive fungal wound infections: a case-control analysis. J Orthop Trauma. 2016;30(3):e93–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Forsberg JA, Potter BK, Polfer EM, Safford SD, Elster EA. Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res. 2014;472(9):2845–54.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Forsberg JA, Elster EA, Andersen RC, Nylen E, Brown TS, Rose MW, Stojadinovic A, Becker KL, McGuigan FX. Correlation of procalcitonin and cytokine expression with dehiscence of wartime extremity wounds. J Bone Joint Surg Am. 2008;90(3):580–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Santiago GF, Bograd B, Basile PL, Howard RT, Fleming M, Valerio IL. Soft tissue injury management with a continuous external tissue expander. Ann Plast Surg. 2012;69(4):418–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Formby P, Flint J, Gordon WT, Fleming M, Andersen RC. Use of a continuous external tissue expander in the conversion of a type IIIB fracture to a type IIIA fracture. Orthopedics. 2013;36(2):e249–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Sabino J, Polfer E, Tintle S, Jessie E, Fleming M, Martin B, Shashikant M, Valerio IL. A decade of conflict: flap coverage options and outcomes in traumatic war-related extremity reconstruction. Plast Reconstr Surg. 2015;135(3):895–902.PubMedCrossRefGoogle Scholar
  25. 25.
    Helgeson MD, Potter BK, Evans KN, Shawen SB. Bioartificial dermal substitute: a preliminary report on its use for the management of complex combat-related soft tissue wounds. J Orthop Trauma. 2007;21(6):394–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Seavey JG, Masters ZA, Balazs GC, Tintle SM, Sabino J, Fleming ME, Valerio IL. Use of a bioartificial dermal regeneration template for skin restoration in combat casualty injuries. Regen Med. 2016;11(1):81–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Valerio IL, Masters Z, Seavey JG, Balazs GC, Ipsen D, Tintle SM. Use of a dermal regeneration template wound dressing in the treatment of combat-related upper extremity soft tissue injuries. J Hand Surg Am. 2016;41(12):e453–60. CrossRefPubMedGoogle Scholar
  28. 28.
    Hsu JR, Beltran MJ, Skeletal Trauma Research Consortium. Shortening and angulation for soft-tissue reconstruction of extremity wounds in a combat support hospital. Mil Med. 2009;174(8):838–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Gordon WT, Grijalva S, Potter BK. Damage control and austere environment external fixation: techniques for the civilian provider. J Surg Orthop Adv. 2012;21(1):22–31.PubMedGoogle Scholar
  30. 30.
    Wheatley BM, Hanley MG, Wong VW, Sabino JM, Potter BK, Tintle SM, Fleming ME, Valerio IL. Heterotopic ossification following tissue transfer for combat-casualty complex Periarticular injuries. Plast Reconstr Surg. 2015;136(6):808e–14e.PubMedCrossRefGoogle Scholar
  31. 31.
    Dickens JF, Wilson KW, Tintle SM, Heckert R, Gordon WT, D’Alleyrand JC, Potter BK. Risk factors for decreased range of motion and poor outcomes in open periarticular elbow fractures. Injury. 2015;46(4):676–81. Scholar
  32. 32.
    Corona BT, Garg K, Ward CL, McDaniel JS, Walters TJ, Rathbone CR. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am J Physiol Cell Physiol. 2013;305(7):C761–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Corona BT, Rivera JC, Owens JG, Wenke JC, Rathbone CR. Volumetric muscle loss leads to permanent disability following extremity trauma. J Rehabil Res Dev. 2015;52(7):785–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Li MT, Willett NJ, Uhrig BA, Guldberg RE, Warren GL. Functional analysis of limb recovery following autograft treatment of volumetric muscle loss in the quadriceps femoris. J Biomech. 2014;47(9):2013–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Gentile NE, Stearns KM, Brown EH, Rubin JP, Boninger ML, Dearth CL, Ambrosio F, Badylak SF. Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss. Am J Phys Med Rehabil. 2014;93(11 Suppl 3):S79–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Patzkowski JC, Owens JG, Blanck RV, Kirk KL, Hsu JR, Skeletal Trauma Research Consortium (STReC). Deployment after limb salvage for high-energy lower-extremity trauma. J Trauma Acute Care Surg. 2012;73(2 Suppl 1):S112–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Doukas WC, Hayda RA, Frisch HM, Andersen RC, Mazurek MT, Ficke JR, Keeling JJ, Pasquina PF, Wain HJ, Carlini AR, MacKenzie EJ. The Military Extremity Trauma Amputation/Limb Salvage (METALS) study: outcomes of amputation versus limb salvage following major lower-extremity trauma. J Bone Joint Surg Am. 2013;95(2):138–45.PubMedCrossRefGoogle Scholar
  38. 38.
    Blair JA, Patzkowski JC, Blanck RV, Owens JG, Hsu JR, Skeletal Trauma Research Consortium (STReC). Return to duty after integrated orthotic and rehabilitation initiative. J Orthop Trauma. 2014;28(4):e70–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Highsmith MJ, Nelson LM, Carbone NT, Klenow TD, Kahle JT, Hill OT, Maikos JT, Kartel MS, Randolph BJ. Outcomes associated with the Intrepid Dynamic Exoskeletal Orthosis (IDEO): a systematic review of the literature. Mil Med. 2016;181(S4):69–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Birch R, Misra P, Stewart MP, Eardley WG, Ramasamy A, Brown K, Shenoy R, Anand P, Clasper J, Dunn R, Etherington J. Nerve injuries sustained during warfare: Part I—epidemiology. J Bone Joint Surg Br. 2012;94(4):523–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Birch R, Misra P, Stewart MP, Eardley WG, Ramasamy A, Brown K, Shenoy R, Anand P, Clasper J, Dunn R, Etherington J. Nerve injuries sustained during warfare: Part II: outcomes. J Bone Joint Surg Br. 2012;94(4):529–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Stansbury LG, Branstetter JG, Lalliss SJ. Amputation in military trauma surgery. J Trauma. 2007;63(4):940–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Tintle SM, Baechler MF, Nanos GP 3rd, Forsberg JA, Potter BK. Traumatic and trauma-related amputations: Part II: upper extremity and future directions. J Bone Joint Surg Am. 2010;92(18):2934–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Jansen JO, Thomas GO, Adams SA, Tai NR, Russell R, Morrison J, Clasper J, Midwinter M. Early management of proximal traumatic lower extremity amputation and pelvic injury caused by improvised explosive devices (IEDs). Injury. 2012;43(7):976–9. Epub 2011 Sep 9.CrossRefPubMedGoogle Scholar
  45. 45.
    Radowsky JS, Rodriguez CJ, Wind GG, Elster EA. A Surgeon’s guide to obtaining hemorrhage control in combat-related dismounted lower extremity blast injuries. Mil Med. 2016;181(10):1300–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Banti M, Walter J, Hudak S, Soderdahl D. Improvised explosive device-related lower genitourinary trauma in current overseas combat operations. J Trauma Acute Care Surg. 2016;80(1):131–4.CrossRefPubMedGoogle Scholar
  47. 47.
    Tintle SM, Keeling JJ, Shawen SB, Forsberg JA, Potter BK. Traumatic and trauma-related amputations: Part I: general principles and lower-extremity amputations. J Bone Joint Surg Am. 2010;92(17):2852–68.PubMedCrossRefGoogle Scholar
  48. 48.
    Tintle SM, LeBrun C, Ficke JR, Potter BK. What is new in trauma-related amputations. J Orthop Trauma. 2016;30(Suppl 3):S16–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Kang DG, Holekamp TF, Wagner SC, Lehman RA Jr. Intrasite vancomycin powder for the prevention of surgical site infection in spine surgery: a systematic literature review. Spine J. 2015;15(4):762–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Khan NR, Thompson CJ, DeCuypere M, et al. A meta-analysis of spinal surgical site infection and vancomycin powder. J Neurosurg Spine. 2014;21(6):974–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Yan H, He J, Chen S, Yu S, Fan C. Intrawound application of vancomycin reduces wound infection after open release of post-traumatic stiff elbows: a retrospective comparative study. J Shoulder Elb Surg. 2014;23(5):686–92.CrossRefGoogle Scholar
  52. 52.
    Zebala LP, Chuntarapas T, Kelly MP, Talcott M, Greco S, Riew KD. Intrawound vancomycin powder eradicates surgical wound contamination: an in vivo rabbit study. J Bone Joint Surg Am. 2014;96(1):46–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Caroom C, Tullar JM, Benton EG Jr, et al. Intrawound vancomycin powder reduces surgical site infections in posterior cervical fusion. Spine. 2013;38(14):1183.PubMedCrossRefGoogle Scholar
  54. 54.
    Pavey GJ, Qureshi AT, Hope DN, Pavlicek RL, Potter BK, Forsberg JA, Davis TA. Bioburden increases heterotopic ossification formation in an established rat model. Clin Orthop Relat Res. 2015;473(9):2840–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Seavey JG, Wheatley BM, Pavey GJ, Tomasino AM, Hanson MA, Sanders EM, Potter BK, Forsberg JA, Qureshi AT, Davis TA. Early local delivery of Vancomycin significantly suppresses ectopic bone formation in a rat model of trauma-induced heterotopic ossification. J Orthop Res. 35(11):2397–406.Google Scholar
  56. 56.
    Gottschalk F. Transfemoral amputation. Biomechanics and surgery. Clin Orthop Relat Res. 1999;361:15–22.CrossRefGoogle Scholar
  57. 57.
    Pinzur MS, Gottschalk F, Pinto MA, Smith DG. Controversies in lower extremity amputation. Instr Course Lect. 2008;57:663–72.PubMedGoogle Scholar
  58. 58.
    Jaegers SM, Arendzen JH, de Jongh HJ. An electromyographic study of the hip muscles of transfemoral amputees in walking. Clin Orthop Relat Res. 1996;328:119–28.CrossRefGoogle Scholar
  59. 59.
    Kasabian AK, Colen SR, Shaw WW, et al. The role of microvascular free flaps in salvaging below-knee amputation stumps: a review of 22 cases. J Trauma. 1991;31:495–500.PubMedCrossRefGoogle Scholar
  60. 60.
    Gallico GG III, Ehrlichman RJ, Jupiter J, May JW Jr. Free flaps to preserve below-knee amputation stumps: long-term evaluation. Plast Reconstr Surg. 1987;79:871–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Wood MR, Hunter GA, Millstein SG. The value of stump split skin grafting following amputation for trauma in adult upper and lower limb amputees. Prosthetics Orthot Int. 1987;11:71–4.Google Scholar
  62. 62.
    Yokota K, Nakanishi M, Sunagawa T, et al. Using full-thickness skin graft from amputated foot can provide a stump with durable skin. J Plast Reconstr Aesthet Surg. 2009;62(12):e667–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Anderson WD, Stewart KJ, Wilson Y, Quaba AA. Skin grafts for the salvage of degloved below-knee amputation stumps. Br J Plast Surg. 2002;55:320–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Parry IS, Mooney KN, Chau C, et al. Effects of skin grafting on successful prosthetic use in children with lower extremity amputation. J Burn Care Res. 2008;29:949–54.PubMedCrossRefGoogle Scholar
  65. 65.
    Fleming ME, O’Daniel A, Bharmal H, Valerio I. Application of the orthoplastic reconstructive ladder to preserve lower extremity amputation length. Ann Plast Surg. 2014;73(2):183–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Polfer EM, Tintle SM, Forsberg JA, Potter BK. Skin grafts for residual limb coverage and preservation of amputation length. Plast Reconstr Surg. 2015;136(3):603–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Kent T, Yi C, Livermore M, Stahel PF. Skin grafts provide durable end-bearing coverage for lower-extremity amputations with critical soft tissue loss. Orthopedics. 2013;36(2):132–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Erdmann D, Sundin BM, Yasui K, Wong MS, Levin LS. Microsurgical free flap transfer to amputation sites: indications and results. Ann Plast Surg. 2002;48:167–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Bibbo C, Ehrlich D, Levin LS, Kovach SJ. Maintaining levels of lower extremity amputations. J Surg Orthop Adv. 2016;25(3):137–48. Review.PubMedCrossRefGoogle Scholar
  70. 70.
    Baccarani A, Follmar KE, De Santis G, Adani R, Pinelli M, Innocenti M, Baumeister S, von Gregory H, Germann G, Erdmann D, Levin LS. Free vascularized tissue transfer to preserve upper extremity amputation levels. Plast Reconstr Surg. 2007;120(4):971–81.PubMedCrossRefGoogle Scholar
  71. 71.
    Potter BK, Burns TC, Lacap AP, Granville RR, Gajewski DA. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J Bone Joint Surg Am. 2007;89:476–86.PubMedCrossRefGoogle Scholar
  72. 72.
    Tintle SM, Shawen SB, Forsberg JA, Gajewski DA, Keeling JJ, Andersen RC, Potter BK. Reoperation after combat-related major lower extremity amputations. J Orthop Trauma. 2014;28(4):232–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Tintle SM, Baechler MF, Nanos GP, Forsberg JA, Potter BK. Reoperations following combat-related upper-extremity amputations. J Bone Joint Surg Am. 2012;94(16):e1191–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Tintle SM, Keeling JJ, Shawen SB, et al. Operative complications of combat-related transtibial amputations: a comparison of the classic burges and modified Ertl tibiofibular synostosis techniques. J Bone Joint Surg Am. 2011;93:1016–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Murray CK, Roop SA, Hospenthal DR, Dooley DP, Wenner K, Hammock J, Taufen N, Gourdine E. Bacteriology of war wounds at the time of injury. Mil Med. 2006;171:826–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Hawley JS, Murray CK, Griffith ME, et al. Susceptibility of acinetobacter strains isolated from deployed U.S. military personnel. Antimicrob Agents Chemother. 2007;51:376–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Murray CK, Griffith ME, Mende K, Guymon CH, Ellis MW, Beckius M, Zera WC, Yu X, Co EM, Aldous W, Hospenthal DR. Methicillin-resistant Staphylococcus Aureus in wound cultures recovered from a combat support hospital in Iraq. J Trauma. 2010;69(Suppl 1):S102–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Murray CK, Wilkins K, Molter NC, Li F, Yu L, Spott MA, Eastridge B, Blackbourne LH, Hospenthal DR. Infections complicating the care of combat casualties during operations Iraqi Freedom and Enduring Freedom. J Trauma. 2011;71(1 Suppl):S62–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Penn-Barwell JG, Fries CA, Sargeant ID, Bennett PM, Porter K. Aggressive soft tissue infections and amputation in military trauma patients. J R Nav Med Serv. 2012;98(2):14–8.PubMedGoogle Scholar
  80. 80.
    Polfer EM, Hoyt BW, Senchak LT, Murphey MD, Forsberg JA, Potter BK. Fluid collections in amputations are not indicative or predictive of infection. Clin Orthop Relat Res. 2014;472(10):2978–83.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    D’Alleyrand JC, Fleming M, Gordon WT, Andersen RC, Potter BK. Combat-related Hemipelvectomy. J Surg Orthop Adv. 2012;21(1):38–43. Review.PubMedGoogle Scholar
  82. 82.
    DʼAlleyrand JC, Lewandowski LR, Forsberg JA, Gordon WT, Fleming ME, Mullis BH, Andersen RC, Potter BK. Combat-related Hemipelvectomy: 14 cases, a review of the literature and lessons learned. J Orthop Trauma. 2015;29(12):e493–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Matsumoto ME, Khan M, Jayabalan P, Ziebarth J, Munin MC. Heterotopic ossification in civilians with lower limb amputations. Arch Phys Med Rehabil. 2014;95(9):1710–3.PubMedCrossRefGoogle Scholar
  84. 84.
    Forsberg JA, Pepek JM, Wagner S, Wilson K, Flint J, Andersen RC, Tadaki D, Gage FA, Stojadinovic A, Elster EA. Heterotopic ossification in high-energy wartime extremity injuries: prevalence and risk factors. J Bone Joint Surg Am. 2009;91:1084–91.PubMedCrossRefGoogle Scholar
  85. 85.
    Forsberg JA, Potter BK. Heterotopic ossification in wartime wounds. J Surg Orthop Adv. 2010;19:54–61.PubMedGoogle Scholar
  86. 86.
    Potter BK, Forsberg JA, Davis TA, Evans KN, Hawksworth JS, Tadaki D, Brown TS, Crane NJ, Burns TC, O’Brien FP, Elster EA. Heterotopic ossification following combat-related trauma. J Bone Joint Surg Am. 2010;92(Suppl 2):74–89.PubMedCrossRefGoogle Scholar
  87. 87.
    Polfer EM, Forsberg JA, Fleming ME, Potter BK. Neurovascular entrapment due to combat-related heterotopic ossification in the lower extremity. J Bone Joint Surg Am. 2013;95(24):e195(1–6).CrossRefGoogle Scholar
  88. 88.
    Pavey GJ, Polfer EM, Nappo KE, Tintle SM, Forsberg JA, Potter BK. What risk factors predict recurrence of heterotopic ossification after excision in combat-related amputations? Clin Orthop Relat Res. 2015;473(9):2814–24.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Crane NJ, Polfer E, Elster EA, Potter BK, Forsberg JA. Raman spectroscopic analysis of combat-related heterotopic ossification development. Bone. 2013;57(2):335–42.PubMedCrossRefGoogle Scholar
  90. 90.
    Harris M, Cilwa K, Elster EA, Potter BK, Forsberg JA, Crane NJ. Pilot study for detection of early changes in tissue associated with heterotopic ossification: moving toward clinical use of Raman spectroscopy. Connect Tissue Res. 2015;56(2):144–52.PubMedCrossRefGoogle Scholar
  91. 91.
    Polfer EM, Hope DN, Elster EA, Qureshi AT, Davis TA, Golden D, Potter BK, Forsberg JA. The development of a rat model to investigate the formation of blast-related post-traumatic heterotopic ossification. Bone Joint J. 2015;97-B(4):572–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Qureshi AT, Crump EK, Pavey GJ, Hope DN, Forsberg JA, Davis TA. Early characterization of blast-related heterotopic ossification in a rat model. Clin Orthop Relat Res. 2015;473(9):2831–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pavey GJ, Qureshi AT, Tomasino AM, Honnold CL, Bishop DK, Agarwal S, Loder S, Levi B, Pacifici M, Iwamoto M, Potter BK, Davis TA, Forsberg JA. Targeted stimulation of retinoic acid receptor-γ mitigates the formation of heterotopic ossification in an established blast-related traumatic injury model. Bone. 2016;90:159–67.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    O’Reilly MA, O’Reilly PM, O’Reilly HM, Sullivan J, Sheahan J. High-resolution ultrasound findings in the symptomatic residual limbs of amputees. Mil Med. 2013;178(12):1291–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Ducic I, Mesbahi AN, Attinger CE, et al. The role of peripheral nerve surgery in the treatment of chronic pain associated with amputation stumps. Plast Reconstr Surg. 2008;121:908–14. discussion 915–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Sehirlioglu A, Ozturk C, Yazicioglu K, et al. Painful neuroma requiring surgical excision after lower limb amputation caused by landmine explosions. Int Orthop. 2009;33:533–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Kuiken TA, Dumanian GA, Lipschutz RD, et al. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics Orthot Int. 2004;28:245–53.Google Scholar
  98. 98.
    Kuiken TA, Miller LA, Lipschutz RD, et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet. 2007;369:371–80.PubMedCrossRefGoogle Scholar
  99. 99.
    O’Shaughnessy KD, Dumanian GA, Lipschutz RD, et al. Targeted reinnervation to improve prosthesis control in transhumeral amputees. A report of three cases. J Bone Joint Surg Am. 2008;90:393–400.PubMedCrossRefGoogle Scholar
  100. 100.
    MacKenzie EJ, Bosse MJ, Castillo RC, Smith DG, Webb LX, Kellam JF, Burgess AR, Swiontkowski MF, Sanders RW, Jones AL, McAndrew MP, Patterson BM, Travison TG, McCarthy ML. Functional outcomes following trauma-related lower extremity amputation. J Bone Joint Surg Am. 2004;86:1636–45.PubMedCrossRefGoogle Scholar
  101. 101.
    Harris AM, Althausen PL, Kellam J, Bosse MJ, Castillo R, Lower Extremity Assessment Project (LEAP) Study Group. Complications following limb-threatening lower extremity trauma. J Orthop Trauma. 2009;23(1):1–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Pierce RO Jr, Kernek CB, Ambrose TA 2nd. The plight of the traumatic amputee. Orthopedics. 1993;16:793–7.PubMedGoogle Scholar
  103. 103.
    Nallegowda M, Lee E, Brandstater M, Kartono AB, Kumar G, Foster GP. Amputation and cardiac comorbidity: analysis of severity of cardiac risk. PM R. 2012;4(9):657–66.PubMedCrossRefGoogle Scholar
  104. 104.
    Modan M, Peles E, Halkin H, Nitzan H, Azaria M, Gitel S, Dolfin D, Modan B. Increased cardiovascular disease mortality rates in traumatic lower limb amputees. Am J Cardiol. 1998;82(10):1242–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Flint JH, Wade AM, Stocker DJ, Pasquina PF, Howard RS, Potter BK. Bone mineral density loss after combat-related lower extremity amputation. J Orthop Trauma. 2014;28(4):238–44. Scholar
  106. 106.
    Kulkarni J, Gaine WJ, Buckley JG, Rankine JJ, Adams J. Chronic low back pain in traumatic lower limb amputees. Clin Rehabil. 2005;19(1):81–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Bosse MJ, MacKenzie EJ, Kellam JF, Burgess AR, Webb LX, Swiontkowski MF, Sanders RW, Jones AL, McAndrew MP, Patterson BM, McCarthy ML, Travison TG, Castillo RC. An analysis of outcomes of reconstruction or amputation after legthreatening injuries. N Engl J Med. 2002;347(24):1924–31.PubMedCrossRefGoogle Scholar
  108. 108.
    MacKenzie EJ, Bosse MJ, Pollak AN, Webb LX, Swiontkowski MF, Kellam JF, Smith DG, Sanders RW, Jones AL, Starr AJ, McAndrew MP, Patterson BM, Burgess AR, Castillo RC. Long-term persistence of disability following severe lower-limb trauma. Results of a seven-year follow-up. J Bone Joint Surg Am. 2005;87(8):1801–9.PubMedGoogle Scholar
  109. 109.
    MacKenzie EJ, Bosse MJ. Factors influencing outcome following limb-threatening lower limb trauma: lessons learned from the Lower Extremity Assessment Project (LEAP). J Am Acad Orthop Surg. 2006;14(10):S205–10. Review.PubMedCrossRefGoogle Scholar
  110. 110.
    McCarthy ML, MacKenzie EJ, Edwin D, Bosse MJ, Castillo RC, Starr A, LEAP Study Group. Psychological distress associated with severe lower-limb injury. J Bone Joint Surg Am. 2003;85(9):1689–97.PubMedCrossRefGoogle Scholar
  111. 111.
    Resnik L, Meucci MR, Lieberman-Klinger S, Fantini C, Kelty DL, Disla R, Sasson N. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation. Arch Phys Med Rehabil. 2012;93(4):710–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Rieger H, Dietl K. Traumatic hemipelvectomy: an update. J Trauma. 1998;45:422–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Nowroozi F, Salvanelli ML, Gerber LH. Energy expenditure in hip disarticulation and hemipelvectomy amputees. Arch Phys Med Rehabil. 1983;64:300–3.PubMedGoogle Scholar
  114. 114.
    Miller LA, Stubblefield KA, Lipschutz RD, et al. Improved myoelectric prosthesis control using targeted reinnervation surgery: a case series. IEEE Trans Neural Syst Rehabil Eng. 2008;16:46–50.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Cheesborough J, Smith L, Kuiken T, et al. Targeted muscle reinnervation and advanced prosthetic arms. Semin Plast Surg. 2015;29:062–72.CrossRefGoogle Scholar
  116. 116.
    Gart MS, Souza JM, Dumanian GA. Targeted muscle Reinnervation in the upper extremity amputee: a technical roadmap. J Hand Surg. 2015;40(9):1877–88.CrossRefGoogle Scholar
  117. 117.
    Pet MA, Ko JH, Friedly JL, et al. Does targeted nerve implantation reduce neuroma pain in amputees? Clin Orthop Relat Res. 2014;472:2991–3001.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Souza JM, Cheesborough JE, Ko JH, et al. Targeted muscle reinnervation: a novel approach to postamputation neuroma pain. Clin Orthop Relat Res. 2014;472:2984–90.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Hagberg K, Häggström E, Uden M, et al. Socket versus bone-anchored trans-femoral prostheses: hip range of motion and sitting comfort. Prosthetics Orthot Int. 2005;29:153–63.CrossRefGoogle Scholar
  120. 120.
    Brånemark R, Berlin O, Hagberg K, et al. A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Joint J. 2014;96-B:106–13.PubMedCrossRefGoogle Scholar
  121. 121.
    Tillander J, Hagberg K, Hagberg L, et al. Osseointegrated titanium implants for limb prostheses attachments: infectious complications. Clin Orthop Relat Res. 2010;468:2781–8.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Tsikandylakis G, Berlin Ö, Brånemark R. Implant survival, adverse events, and bone remodeling of osseointegrated percutaneous implants sfor transhumeral amputees. Clin Orthop Relat Res. 2014;472:2947–56.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Uniformed Services University-Walter Reed Department of Surgery, Walter Reed National Military Medical CenterBethesdaUSA

Personalised recommendations