Advertisement

Scalable Interactive Platform for Geographic Evaluation of Sea-Level Rise Impact Combining High-Performance Computing and WebGIS Client

  • Agnès Tellez-ArenasEmail author
  • Robin Quique
  • Faïza Boulahya
  • Gonéri Le Cozannet
  • François Paris
  • Sylvestre Le Roy
  • Fabrice Dupros
  • François Robida
Chapter
  • 452 Downloads
Part of the Springer Climate book series (SPCL)

Abstract

As the climate is changing, more applied information on resulting impacts are required to inform adaptation planning. Over the last decade, the amount of information relevant to climate change impact assessment has grown drastically. This can particularly be illustrated in coastal areas, threatened by sea-level rise due to climate change, where a key recent development has been the delivery of precise and accurate topography obtained by Light Detection and Ranging (Li-DAR) at regional and national scales, i.e., respectively, large and small scales. However, using such large, complex, and heterogeneous coastal data sets in a contextual manner is far from straightforward. It is the reason why these developments have not led to easier assessment of coastal climate change impacts so far. In this chapter, we address this interoperability challenge by developing and describing a prototype of Web service combining Li-DAR, tidal, and sea-level rise data to quickly communicate spatial information on the exposure to future coastal flooding along the French coastal zones. We discuss several issues related to data architecture, on-the-fly (geo)-processing capabilities, management of asynchronous workflows, and data diffusion strategies in the context of international standards such as Infrastructure for Spatial Information in Europe (INSPIRE). We believe that our flexible architecture mainly reusing off-the-shelf components is able to improve both complex scenarios’ analysis for experts and dissemination of these future coastal changes to the general public.

Keywords

Coastal climate services High-performance computing Standard web services WebGIS client 

References

  1. Brasseur GP, Gallardo L (2016) Climate services: lessons learned and future. Earth’s Future 4(3):78–89 (W. O. Library, Éd.)Google Scholar
  2. Cazenave A, Le Cozannet G (2014) Sea level rise and its coastal impacts. Earth’s Future 2(2):15–34 (W. O. Library, Éd.)Google Scholar
  3. Clark PU, Shakun JD, Marcott SA, Mix AC, Eby M, Kulp S, Levermann A, Milne GA, Pfister PL, Santer BD, Schrag DP, Solomon S, Stocker TF, Strauss BH, Weaver AJ, Winkelmann R, Archer D, Bard E, Goldner A, Lambeck K, Pierrehumbert RT, Plattner G-K (2016) Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat Clim Change 6:360–369CrossRefGoogle Scholar
  4. Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner H-O, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349Google Scholar
  5. Gornitz V (1991) Global coastal hazards from future sea level rise. Palaeogeogr Palaeoclimatol Palaeoecol 89(4):379–398 (Elsevier, Éd.)Google Scholar
  6. Horváth F, Ittzés P, Ittzés D, Barcza Z, Dobor L, Hidy D, Marosi A, Hardisty A (2014) Supporting environmental modelling with Taverna workflows, web services and desktop grid technology. In: Proceedings—7th international congress on environmental modelling and software: bold visions for environmental modeling, (iEMSs 2014) vol 1. International Environmental Modelling and Software Society, San Diego, United States, pp 423–430, 15–19 júniusGoogle Scholar
  7. Le Cozannet G, Ait-Kaci A, Colas S, Lacaze XD, Lecacheux S, Mirgon C, Peinturier C, Garcin M, Oliveros C (2013a) Recent GIS based national assessments of climate change consequences in France: methods, results and lessons learnt. J Coast Res 1421–1426Google Scholar
  8. Le Cozannet G, Garcin M, Bulteau T, Mirgon C, Yates ML, Méndez M, Baills A, Idier D, Oliveros C (2013b) An AHP-derived method for mapping the physical vulnerability of coastal areas at regional scales. Nat Hazards Earth Syst Sci 13:1209–1227CrossRefGoogle Scholar
  9. Le Cozannet G, Rohmer J, Cazenave A, Idier D, van de Wal R, de Winter R, Pedreros R, Balouin Y, Vinchon C, Oliveros C (2015) Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environ Model Softw 73:44–56CrossRefGoogle Scholar
  10. Mattoso M, Dias J, Ocaña KACS, Ogasawara E, Costa F, Horta F, Silva V, de Oliveira D (2015) Dynamic steering of HPC scientific workflows: a survey. Future Gener Comput Syst 46:100–113CrossRefGoogle Scholar
  11. Paskoff RP (2004) Potential implications of sea-level rise for France. J Coast Res 20(2):424–434 (I. Coastal Education & Research Foundation, Éd.)Google Scholar
  12. Yates M, Le Cozannet G, Lenotre N (2011) Quantifying errors in long-term coastal erosion and inundation hazard assessments. J Coast Res 64:260–264 (A. P. Services, Éd.)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Agnès Tellez-Arenas
    • 1
    Email author
  • Robin Quique
    • 1
  • Faïza Boulahya
    • 1
  • Gonéri Le Cozannet
    • 1
  • François Paris
    • 1
  • Sylvestre Le Roy
    • 1
  • Fabrice Dupros
    • 1
  • François Robida
    • 1
  1. 1.BRGM Bureau de recherches géologiques et minièresOrléansFrance

Personalised recommendations