Advertisement

Team RoboSimian: Semi-autonomous Mobile Manipulation at the 2015 DARPA Robotics Challenge Finals

  • Sisir Karumanchi
  • Kyle Edelberg
  • Ian Baldwin
  • Jeremy Nash
  • Brian Satzinger
  • Jason Reid
  • Charles Bergh
  • Chelsea Lau
  • John Leichty
  • Kalind Carpenter
  • Matthew Shekels
  • Matthew Gildner
  • David Newill-Smith
  • Jason Carlton
  • John Koehler
  • Tatyana Dobreva
  • Matthew Frost
  • Paul Hebert
  • James Borders
  • Jeremy Ma
  • Bertrand Douillard
  • Krishna Shankar
  • Katie Byl
  • Joel Burdick
  • Paul Backes
  • Brett Kennedy
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 121)

Abstract

This article discusses hardware and software improvements to the RoboSimian system leading up to and during the 2015 DARPA Robotics Challenge (DRC) Finals. Team RoboSimian achieved a 5th place finish by achieving 7 points in 47:59 min. We present an architecture that was structured to be adaptable at the lowest level and repeatable at the highest level. The low-level adaptability was achieved by leveraging tactile measurements from force torque sensors in the wrist coupled with whole body motion primitives. We use the term “behaviors” to conceptualize this low-level adaptability. Each behavior is a contact-triggered state machine that enables execution of short order manipulation and mobility tasks autonomously. At a high level, we focused on a teach-and-repeat style of development by storing executed behaviors and navigation poses in object/task frame for recall later. This enabled us to perform tasks with high repeatability on competition day while being robust to task differences from practice to execution.

Notes

Acknowledgements

The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, with funding from the DARPA Robotics Challenge Track A program through an agreement with NASA with contributions from the Army Research Lab’s RCTA program.

References

  1. Backes, P., Diaz-Calderon, A., Robinson, M., Bajracharya, M., & Helmick, D. (2005). Automated rover positioning and instrument placement. In Aerospace Conference (pp. 60–71). IEEE.Google Scholar
  2. Backes, P., Lindemann, R., Collins, C., & Younse, P. (2010). An integrated coring and caching concept. In Aerospace Conference (pp. 1–7). IEEE.Google Scholar
  3. Backes, P. G. (1991). Generalized compliant motion with sensor fusion. In Fifth International Conference on Advanced Robotics. 91 ICAR. Robots in Unstructured Environments (pp. 1281–1286). IEEE.Google Scholar
  4. Barrett. (2016). BarrettHandTM gripper spec-sheet. Retrieved July 11, 2016 from http://www.barrett.com/products-hand-specifications.htm.
  5. Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-d shapes. Robotics-DL tentative. International Society for Optics and Photonics.Google Scholar
  6. Buehler, M., Iagnemma, K., & Singh, S. (2007). The 2005 DARPA grand challenge: The great robot race (Vol. 36). Springer Science & Business Media.Google Scholar
  7. Buehler, M., Iagnemma, K., & Singh, S. (2009). The DARPA urban challenge: Autonomous vehicles in city traffic. Berlin, Heidelberg: Springer.Google Scholar
  8. Buss, S. R. (2004). Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation, 17(1–19).Google Scholar
  9. Chen, Y. & Medioni, G. (1992). Object modelling by registration of multiple range images. Image and vision computing.Google Scholar
  10. DARPA. (2015a). Video cast of the blue course from day 2 of the 2015 DARPA robotics challenge Finals. Retrieved August 20, 2015 from https://youtu.be/s6ZdC_ZJXK8?t=35864.
  11. DARPA. (2015b). Video cast of the red course from day 1 of the 2015 DARPA robotics challenge finals. Retrieved August 20, 2015 https://youtu.be/vgt6FPWU2Lc?t=17932.
  12. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., et al. (2015). An architecture for online affordance-based perception and whole-body planning. Journal of Field Robotics, 32(2), 229–254.Google Scholar
  13. Feng, S., Whitman, E., Xinjilefu, X., & Atkeson, C. G. (2015). Optimization-based full body control for the DARBA robotics challenge. Journal of Field Robotics, 32(2), 293–312.Google Scholar
  14. Hackett, D., Pippine, J., Watson, A., Sullivan, C., & Pratt, G. (2014). Foreword to the special issue on autonomous grasping and manipulation: The DARPA autonomous robotic manipulation (ARM) program: A synopsis. Autonomous Robots, 36(1–2), 5–9.Google Scholar
  15. Hayati, S., Volpe, R., Backes, P., Balaram, J., Welch, R., Ivlev, R., et al. (1997). The rocky 7 rover: A mars sciencecraft prototype. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 3, pp. 2458–2464). IEEE.Google Scholar
  16. Hebert, P., Aydemir, A., Borders, J., Bajracharya, M., Hudson, N., Shankar, K., et al. (2015a). Supervised remote robot with guided autonomy and teleoperation (surrogate): A framework for whole-body manipulation. In IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  17. Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015b). Mobile manipulation and mobility as manipulation—Design and algorithms of robosimian. Journal of Field Robotics.Google Scholar
  18. Howard, A. (2008). Real-time stereo visual odometry for autonomous ground vehicles. In International Conference on Robots and Systems (IROS).Google Scholar
  19. Hudson, N., Howard, T., Ma, J., Jain, A., Bajracharya, M., Myint, S., et al. (2012). End-to-end dexterous manipulation with deliberate interactive estimation. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2371–2378).Google Scholar
  20. Hudson, N., Ma, J., Hebert, P., Jain, A., Bajracharya, M., Allen, T., et al. (2014). Model-based autonomous system for performing dexterous, human-level manipulation tasks. Autonomous Robots, 36(1–2), 31–49.Google Scholar
  21. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics, 32(2), 192–208.Google Scholar
  22. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S. (2011). Stomp: Stochastic trajectory optimization for motion planning. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 4569–4574). IEEE.Google Scholar
  23. Kennedy, B. & Carpenter, K. (2016). Cam-Hand: This robust gripper design has applicability to both robots and as a prosthetic for the physically challenged. NASA tech briefs, NPO 49607. Retrieved July 11, 2016 from http://www.techbriefs.com/component/content/article/ntb/tech-briefs/machinery-and-automation/24809.
  24. Koolen, T., Smith, J., Thomas, G., Bertrand, S., Carff, J., Mertins, N., et al. (2013). Summary of team IHMC’s virtual robotics challenge entry. In 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 307–314). IEEE.Google Scholar
  25. Kuffner, J. J., & LaValle, S. (2000). RRT-connect: An efficient approach to single-query path planning. In IEEE International Conference on Robotics and Automation (Vol. 2, pp. 995–1001).Google Scholar
  26. Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., et al. (2015). Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots, 1–27.Google Scholar
  27. Kuindersma, S., Permenter, F., Tedrake, R. (2014). An efficiently solvable quadratic program for stabilizing dynamic locomotion. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2589–2594). IEEE.Google Scholar
  28. Marton, Z.-C., Pangercic, D., Rusu, R. B., Holzbach, A., & Beetz, M. (2010). Hierarchical object geometric categorization and appearance classification for mobile manipulation. In 2010 10th IEEE-RAS International Conference on Humanoid Robots (pp. 365–370). IEEE.Google Scholar
  29. Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., et al. (2007). Computer vision on mars. International Journal of Computer Vision, 75(1), 67–92.Google Scholar
  30. Pang, G., Qiu, R., Huang, J., You, S., & Neumann, U. (2015). Automatic 3d industrial point cloud modeling and recognition. In 2015 14th IAPR International Conference on Machine Vision Applications (MVA) (pp. 22–25). IEEE.Google Scholar
  31. Pelican. (2016). Pelican 0550 transport case. Retrieved July 11, 2016 from http://www.thepelicanstore.com/pelican-0550-transport-case-1187.aspx.
  32. Ratliff, N., Zucker, M., Bagnell, J. A., & Srinivasa, S. (2009). Chomp: Gradient optimization techniques for efficient motion planning. In IEEE International Conference on Robotics and Automation, ICRA’09 (pp. 489–494). IEEE.Google Scholar
  33. Reed, C. M., & Durlach, N. I. (1998). Note on information transfer rates in human communication. Presence: Teleoperators and Virtual Environments, 7(5), 509–518.Google Scholar
  34. Robotiq. (2016a). Robotiq 2-finger adaptive gripper spec-sheet. Retrieved July 11, 2016 from http://robotiq.com/wp-content/uploads/2015/12/specsheet-2finger85UR-14apr2016-V2-web.pdf.
  35. Robotiq. (2016b). Robotiq 3-finger adaptive gripper spec-sheet. Retrieved July 11, 2016 from http://robotiq.com/wp-content/uploads/2014/08/Robotiq-3-Finger-Adaptive-Gripper-Specifications-ES.pdf.
  36. Schenker, P. S., Huntsberger, T. L., Pirjanian, P., Baumgartner, E. T., Aghazarian, H., Trebi-Ollennu, A., et al. (2001). Robotic automation for space: Planetary surface exploration, terrain-adaptive mobility, and multirobot cooperative tasks. In Intelligent Systems and Advanced Manufacturing (pp. 12–28). International Society for Optics and Photonics.Google Scholar
  37. Shekels, M., Carpenter, K., & Kennedy, B. (2016). Cam-Hand: A robust gripper design for manipulation in positive and negative spaces. Manuscript in Preparation.Google Scholar
  38. Steder, B., Grisetti, G., Van Loock, M., & Burgard, W. (2009). Robust on-line model-based object detection from range images. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4739–4744). IEEE.Google Scholar
  39. Stentz, A., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics, 32(2), 209–228.Google Scholar
  40. Tedrake, R., Fallon, M., Karumanchi, S., Kuindersma, S., Antone, M., Schneider, T., et al. (2014). A summary of team mits approach to the virtual robotics challenge. In IEEE International Conference on Robotics and Automation.Google Scholar
  41. Thrun, S., et al. (2006). Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics, 23(9), 661–692.Google Scholar
  42. Urmson, C., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25(8), 425–466.Google Scholar
  43. Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57.Google Scholar
  44. Zucker, M., Jun, Y., Killen, B., Kim, T.-G., & Oh, P. (2013). Continuous trajectory optimization for autonomous humanoid door opening. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–5). IEEE.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sisir Karumanchi
    • 1
  • Kyle Edelberg
    • 1
  • Ian Baldwin
    • 1
  • Jeremy Nash
    • 1
  • Brian Satzinger
    • 2
  • Jason Reid
    • 1
  • Charles Bergh
    • 1
  • Chelsea Lau
    • 2
  • John Leichty
    • 1
  • Kalind Carpenter
    • 1
  • Matthew Shekels
    • 1
  • Matthew Gildner
    • 1
  • David Newill-Smith
    • 1
  • Jason Carlton
    • 1
  • John Koehler
    • 1
  • Tatyana Dobreva
    • 1
  • Matthew Frost
    • 1
  • Paul Hebert
    • 1
  • James Borders
    • 1
  • Jeremy Ma
    • 1
  • Bertrand Douillard
    • 1
  • Krishna Shankar
    • 3
  • Katie Byl
    • 2
  • Joel Burdick
    • 3
  • Paul Backes
    • 1
  • Brett Kennedy
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.University of CaliforniaSanta BarbaraUSA
  3. 3.California Institute of TechnologyPasadenaUSA

Personalised recommendations