Advertisement

DRC Team NimbRo Rescue: Perception and Control for Centaur-Like Mobile Manipulation Robot Momaro

  • Max Schwarz
  • Marius Beul
  • David Droeschel
  • Tobias Klamt
  • Christian Lenz
  • Dmytro Pavlichenko
  • Tobias Rodehutskors
  • Michael Schreiber
  • Nikita Araslanov
  • Ivan Ivanov
  • Jan Razlaw
  • Sebastian Schüller
  • David Schwarz
  • Angeliki Topalidou-Kyniazopoulou
  • Sven Behnke
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 121)

Abstract

Robots that solve complex tasks in environments too dangerous for humans to enter are desperately needed, e.g. for search and rescue applications. We describe our mobile manipulation robot Momaro, with which we participated successfully in the DARPA Robotics Challenge. It features a unique locomotion design with four legs ending in steerable wheels, which allows it both to drive omnidirectionally and to step over obstacles or climb. Furthermore, we present advanced communication and teleoperation approaches, which include immersive 3D visualization, and 6D tracking of operator head and arm motions. The proposed system is evaluated in the DARPA Robotics Challenge, the DLR SpaceBot Camp 2015, and lab experiments. We also discuss the lessons learned from the competitions and present initial steps towards autonomous operator assistance functions.

Notes

Acknowledgements

This work was supported by the European Union’s Horizon 2020 Programme under Grant Agreement 644839 (CENTAURO) and by Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) under Grant No. SORA1413.

References

  1. Adachi, H., Koyachi, N., Arai, T., Shimiza, A., & Nogami, Y. (1999). Mechanism and control of a leg-wheel hybrid mobile robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Vol. 3, pp. 1792–1797).Google Scholar
  2. Ballantyne, G. H., & Moll, F. (2003). The da Vinci telerobotic surgical system: The virtual operative field and telepresence surgery. Surgical Clinics of North America, 83(6), 1293–1304.CrossRefGoogle Scholar
  3. Borst, C., Wimbock, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., et al. (2009). Rollin’ Justin—Mobile platform with variable base. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1597–1598).Google Scholar
  4. Buss, S. R., & Kim, J.-S. (2005). Selectively damped least squares for inverse kinematics. Graphics, GPU, and Game Tools, 10(3), 37–49.CrossRefGoogle Scholar
  5. Cho, B.-K., Kim, J.-H., & Oh, J.-H. (2011). Online balance controllers for a hopping and running humanoid robot. Advanced Robotics, 25(9–10), 1209–1225.CrossRefGoogle Scholar
  6. Cigolle, Z. H., Donow, S., & Evangelakos, D. (2014). A survey of efficient representations for independent unit vectors. Journal of Computer Graphics Techniques, 3(2).Google Scholar
  7. DRC-Teams. (2015). What happened at the DARPA Robotics Challenge? www.cs.cmu.edu/~cga/drc/events.
  8. Droeschel, D., Schwarz, M., & Behnke, S. (2017). Continuous mapping and localization for autonomous navigation in rough terrain using a 3d laser scanner. Robotics and Autonomous Systems, 88, 104–115.CrossRefGoogle Scholar
  9. Droeschel, D., Stückler, J., & Behnke, S. (2014). Local multi-resolution representation for 6d motion estimation and mapping with a continuously rotating 3d laser scanner. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 5221–5226).Google Scholar
  10. Endo, G., & Hirose, S. (2000). Study on roller-walker (multi-mode steering control and self-contained locomotion). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (Vol. 3, 2808–2814).Google Scholar
  11. Gossow, D., Leeper, A., Hershberger, D., & Ciocarlie, M. (2011). Interactive markers: 3-d user interfaces for ROS applications. IEEE Robotics & Automation Magazine, 4(18), 14–15.CrossRefGoogle Scholar
  12. Hagn, U., Konietschke, R., Tobergte, A., Nickl, M., Jörg, S., Kübler, B., et al. (2010). DLR MiroSurge: A versatile system for research in endoscopic telesurgery. International Journal of Computer Assisted Radiology and Surgery (IJCARS), 5(2), 183–193.CrossRefGoogle Scholar
  13. Halme, A., Leppänen, I., Suomela, J., Ylönen, S., & Kettunen, I. (2003). WorkPartner: Interactive human-like service robot for outdoor applications. International Journal of Robotics Research (IJRR), 22(7–8), 627–640.CrossRefGoogle Scholar
  14. Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015). Mobile manipulation and mobility as manipulation-design and algorithms of robosimian. Journal of Field Robotics (JFR), 32(2), 255–274.CrossRefGoogle Scholar
  15. Huang, T., Yang, G., & Tang, G. (1979). A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(1), 13–18.CrossRefGoogle Scholar
  16. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics (JFR), 32(2), 192–208.CrossRefGoogle Scholar
  17. Kaupisch, T., Noelke, D., & Arghir, A. (2015). DLR spacebot cup—Germany’s space robotics competition. In Proceedings of the Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA).Google Scholar
  18. Kim, M.-S., & Oh, J.-H. (2010). Posture control of a humanoid robot with a compliant ankle joint. International Journal of Humanoid Robotics, 07(01), 5–29.CrossRefGoogle Scholar
  19. Klamt, T. & Behnke, S. (2017). Anytime hybrid driving-stepping locomotion planning. In Accepted for International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  20. Kot, T. & Novák, P. (2014). Utilization of the Oculus Rift HMD in mobile robot teleoperation. In Applied Mechanics and Materials (Vol. 555, pp. 199–208). Trans Tech Publications.CrossRefGoogle Scholar
  21. Kröger, T. (2011). Opening the door to new sensor-based robot applications—The Reflexxes Motion Libraries. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  22. Kron, A., Schmidt, G., Petzold, B., Zäh, M., Hinterseer, P., Steinbach, E., et al. (2004). Disposal of explosive ordnances by use of a bimanual haptic telepresence system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1968–1973).Google Scholar
  23. Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). G2o: A general framework for graph optimization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  24. Liegeois, A. (1977). Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12), 868–871.CrossRefGoogle Scholar
  25. Lim, J. & Oh, J.-H. (2015). Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control. Journal of Field Robotics (JFR).CrossRefGoogle Scholar
  26. Martins, H., & Ventura, R. (2009). Immersive 3-D teleoperation of a search and rescue robot using a head-mounted display. In Proceedings of the international Conference on Emerging Technologies and Factory Automation (ETFA).Google Scholar
  27. Mehling, J., Strawser, P., Bridgwater, L., Verdeyen, W., & Rovekamp, R. (2007). Centaur: NASA’s mobile humanoid designed for field work. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 2928–2933).Google Scholar
  28. Pavlichenko, D. & Behnke, S. (2017). Efficient stochastic multicriteria arm trajectory optimization. In Accepted for International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  29. Raibert, M., Blankespoor, K., Nelson, G., Playter, R., et al. (2008). BigDog, the rough–terrain quadruped robot. In Proceedings of the 17th World Congress, The International Federation of Automatic Control (pp. 10823–10825), Seoul, KoreaCrossRefGoogle Scholar
  30. Roennau, A., Kerscher, T., & Dillmann, R. (2010). Design and kinematics of a biologically-inspired leg for a six-legged walking machine. In 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 626 –631).Google Scholar
  31. Satzinger, B., Lau, C., Byl, M., & Byl, K. (2014). Experimental results for dexterous quadruped locomotion planning with RoboSimian. In Proceedings of the International Symposium on Experimental Robotics (ISER).Google Scholar
  32. Schwarz, M., Beul, M., Droeschel, D., Schüller, S., Periyasamy, A. S., Lenz, C., et al. (2016a). Supervised autonomy for exploration and mobile manipulation in rough terrain with a centaur-like robot. Frontiers in Robotics and AI, 3, 57.CrossRefGoogle Scholar
  33. Schwarz, M., Rodehutskors, T., Schreiber, M., & Behnke, S. (2016b). Hybrid driving-stepping locomotion with the wheeled-legged robot momaro. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  34. Semini, C., Tsagarakis, N., Guglielmino, E., Focchi, M., Cannella, F., & Caldwell, D. (2011). Design of HyQ—A hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6), 831–849.CrossRefGoogle Scholar
  35. Smith, C., Christensen, H., et al. (2009). Wiimote robot control using human motion models. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5509–5515).Google Scholar
  36. Stentz, A., Herman, H., Kelly, A., Meyhofer, E., Haynes, G. C., Stager, D., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics (JFR), 32(2), 209–228.CrossRefGoogle Scholar
  37. Stückler, J., Droeschel, D., Gräve, K., Holz, D., Schreiber, M., Topalidou-Kyniazopoulou, A., et al. (2014). Increasing flexibility of mobile manipulation and intuitive human-robot interaction in RoboCup@Home. In RoboCup 2013: Robot World Cup XVII (pp. 135–146). Springer.Google Scholar
  38. Stückler, J., Schwarz, M., Schadler, M., Topalidou-Kyniazopoulou, A., & Behnke, S. (2015). NimbRo Explorer: Semiautonomous exploration and mobile manipulation in rough terrain. Journal of Field Robotics (JFR).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Max Schwarz
    • 1
  • Marius Beul
    • 1
  • David Droeschel
    • 1
  • Tobias Klamt
    • 1
  • Christian Lenz
    • 1
  • Dmytro Pavlichenko
    • 1
  • Tobias Rodehutskors
    • 1
  • Michael Schreiber
    • 1
  • Nikita Araslanov
    • 1
  • Ivan Ivanov
    • 1
  • Jan Razlaw
    • 1
  • Sebastian Schüller
    • 1
  • David Schwarz
    • 1
  • Angeliki Topalidou-Kyniazopoulou
    • 2
  • Sven Behnke
    • 1
  1. 1.Autonomous Intelligent Systems GroupUniversity of BonnBonnGermany
  2. 2.Centre for Research & Technology - HellasThessalonikiGreece

Personalised recommendations