Advertisement

Developing a Robust Disaster Response Robot: CHIMP and the Robotics Challenge

  • G. Clark Haynes
  • David Stager
  • Anthony Stentz
  • J Michael Vande Weghe
  • Brian Zajac
  • Herman Herman
  • Alonzo Kelly
  • Eric Meyhofer
  • Dean Anderson
  • Dane Bennington
  • Jordan Brindza
  • David Butterworth
  • Chris Dellin
  • Michael George
  • Jose Gonzalez-Mora
  • Morgan Jones
  • Prathamesh Kini
  • Michel Laverne
  • Nick Letwin
  • Eric Perko
  • Chris Pinkston
  • David Rice
  • Justin Scheifflee
  • Kyle Strabala
  • Mark Waldbaum
  • Randy Warner
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 121)

Abstract

CHIMP, the CMU Highly Intelligent Mobile Platform, is a humanoid robot capable of executing complex tasks in dangerous, degraded, human-engineered environments, such as those found in disaster response scenarios. CHIMP is uniquely designed for mobile manipulation in challenging environments, as the robot performs manipulation tasks using an upright posture, yet uses more stable prostrate postures for mobility through difficult terrain. In this paper, we report on the improvements made to CHIMP—both in its mechanical design and its software systems—in preparation for the DARPA Robotics Challenge Finals in June 2015. These include details on CHIMP’s novel mechanical design, actuation systems, robust construction, all terrain mobility, supervised autonomy approach, and unique user interfaces utilized for the challenge. Additionally, we provide an overview of CHIMP’s performance and detail the various lessons learned over the course of the challenge. CHIMP was one of the winners of the DARPA Robotics Challenge, completing all tasks and finishing 3rd place of 23 teams. Notably, CHIMP was the only robot to stand back up after accidentally falling over, a testament to the robustness engineered into the robot and a remote operator’s ability to execute complex tasks using a highly capable robot. We present CHIMP as a concrete engineering example of a successful disaster response robot.

Notes

Acknowledgements

Development of the CHIMP robot has been supported by DARPA/SPAWAR under contract number N65236-12-C-3886. This work would not have been possible without the dedication of the entire Team Tartan Rescue and the National Robotics Engineering Center at Carnegie Mellon University. Additional team sponsors have provided generous support, notably from Foxconn, Amazon, and Carnegie Robotics, with additional support by Accurate Gear and Machine, Brentronics, Eclipse Metal Fabrication, Elmo Motion Control, Faulhaber, Glenair, Google, Harmonic Drive, Honeywell, Kollmorgen, Micromo, Oshkosh/JLG, Pratt & Miller, Robotiq, Sepac, Shell, and THK.

References

  1. Berenson, D., Srinivasa, S., Ferguson , D., & Kuffner, J. (2009). Manipulation planning on constraint manifolds. In IEEE International Conference on Robotics and Automation (ICRA ’09).Google Scholar
  2. Besl, P. J., & McKay, H. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.CrossRefGoogle Scholar
  3. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., et al. (2015). An architecture for online affordance-based perception and whole-body planning. Journal of Field Robotics, 32(2), 229–254.CrossRefGoogle Scholar
  4. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRefGoogle Scholar
  5. George, M., Tardif, J.-P., & Kelly, A. (2015). Visual and inertial odometry for a disaster recovery humanoid. In Field and service robotics (pp. 501–514). Springer.Google Scholar
  6. Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015). Mobile manipulation and mobility as manipulationdesign and algorithms of robosimian. Journal of Field Robotics, 32(2), 255–274.CrossRefGoogle Scholar
  7. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics, 32(2), 192–208.CrossRefGoogle Scholar
  8. Kuffner, J. J. & LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning. In 2000 IEEE International Conference on Robotics and Automation, Proceedings ICRA ’00 (Vol. 2, pp. 995–1001).Google Scholar
  9. Lim, J., Shim, I., Sim, O., Joe, H., Kim, I., Lee, J., et al. (2015). Robotic software system for the disaster circumstances: System of team KAIST in the DARPA robotics challenge finals. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 1161–1166). IEEE.Google Scholar
  10. Nelson, G., Saunders, A., Neville, N., Swilling, B., Bondaryk, J., Billings, D., et al. (2012). Petman: A humanoid robot for testing chemical protective clothing. Journal of the Robotics Society of Japan, 30(4), 372–377.CrossRefGoogle Scholar
  11. Pitzer, B., Styer, M., Bersch, C., DuHadway, C., & Becker, J. (2011). Towards perceptual shared autonomy for robotic mobile manipulation. In 2011 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6245–6251).Google Scholar
  12. Ruehl, S. W., Hermann, A., Xue, Z., Kerscher, T., & Dillmann, R. (2011). Graspability: A description of work surfaces for planning of robot manipulation sequences. In 2011 IEEE International Conference on Robotics and Automation (ICRA) (pp. 496–502).Google Scholar
  13. Stentz, A. T., Herman, H., Kelly, A., Meyhofer, E., Haynes, G. C., Stager, D., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics (JFR), Special Issue: Special Issue on DARPA Robotics Challenge (DRC), 32(2), 209–228.CrossRefGoogle Scholar
  14. Şucan, I. A., Moll, M., & Kavraki, L. E. (2012). The open motion planning library. IEEE Robotics & Automation Magazine, 19(4), 72–82. http://ompl.kavrakilab.org.CrossRefGoogle Scholar
  15. Urata, J., Nakanishi, Y., Okada, K., & Inaba, M. (2010). Design of high torque and high speed leg module for high power humanoid. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4497–4502). IEEE.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • G. Clark Haynes
    • 1
  • David Stager
    • 1
  • Anthony Stentz
    • 1
  • J Michael Vande Weghe
    • 1
  • Brian Zajac
    • 1
  • Herman Herman
    • 1
  • Alonzo Kelly
    • 1
  • Eric Meyhofer
    • 1
  • Dean Anderson
    • 1
  • Dane Bennington
    • 1
  • Jordan Brindza
    • 1
  • David Butterworth
    • 1
  • Chris Dellin
    • 1
  • Michael George
    • 1
  • Jose Gonzalez-Mora
    • 1
  • Morgan Jones
    • 1
  • Prathamesh Kini
    • 1
  • Michel Laverne
    • 1
  • Nick Letwin
    • 1
  • Eric Perko
    • 1
  • Chris Pinkston
    • 1
  • David Rice
    • 1
  • Justin Scheifflee
    • 1
  • Kyle Strabala
    • 1
  • Mark Waldbaum
    • 1
  • Randy Warner
    • 1
  1. 1.Carnegie Mellon National Robotics Engineering CenterPittsburghUSA

Personalised recommendations