Advertisement

Robot System of DRC-HUBO+ and Control Strategy of Team KAIST in DARPA Robotics Challenge Finals

  • Jeongsoo Lim
  • Hyoin Bae
  • Jaesung Oh
  • Inho Lee
  • Inwook Shim
  • Hyobin Jung
  • Hyun Min Joe
  • Okkee Sim
  • Taejin Jung
  • Seunghak Shin
  • Kyungdon Joo
  • Mingeuk Kim
  • Kangkyu Lee
  • Yunsu Bok
  • Dong-Geol Choi
  • Buyoun Cho
  • Sungwoo Kim
  • Jungwoo Heo
  • Inhyeok Kim
  • Jungho Lee
  • In So Kwon
  • Jun-Ho Oh
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 121)

Abstract

This paper summarizes how Team KAIST prepared for the DARPA Robotics Challenge (DRC) Finals, especially in terms of the robot system and control strategy. To imitate the Fukushima nuclear disaster situation, the DRC performed a total of eight tasks and degraded communication conditions. This competition demanded various robotic technologies such as manipulation, mobility, telemetry, autonomy, localization, etc. Their systematic integration and the overall system robustness were also important issues in completing the challenge. In this sense, this paper presents a hardware and software system for the DRC-HUBO+, a humanoid robot that was used for the DRC; it also presents control methods such as inverse kinematics, compliance control, a walking algorithm, and a vision algorithm, all of which were implemented to accomplish the tasks. The strategies and operations for each task are briefly explained with vision algorithms. This paper summarizes what we learned from the DRC before the conclusion. In the competition, 25 international teams participated with their various robot platforms. We competed in this challenge using the DRC-HUBO+ and won first place in the competition.

References

  1. AlwaysUp| Run Any Application as a Window Service. Retrieved August 14, 2015, from http://www.coretechnologies.com/products/AlwaysUp/.
  2. Bae, H., Lee, I., Jung, T., & Oh, J. H. (2016, October). Walking-wheeling dual mode strategy for humanoid robot, DRC-HUBO+. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016 (pp. 1342–1348). IEEE.Google Scholar
  3. Bouguet, J.-Y. (2004). Camera calibration toolbox for Matlab.Google Scholar
  4. Boykov, Y., & Veksler. O. (2006) Graph curs in vision and graphics: Theories and applications. In Handbook of mathematical models in computer vision. (pp. 79–96) Springer.Google Scholar
  5. Cheng, G., & Zelinsky, A. (2001). Supervised autonomy: A framework for human-robot systems development. Autonomous Robots, 10(3), 251–266.CrossRefGoogle Scholar
  6. Cho, B. K., Kim, J. H., & Oh, J. H. (2011). Online balance controllers for a hopping and running humanoid robot. Advanced Robotics, 25(9–10), 1209–1225.CrossRefGoogle Scholar
  7. Dantam, N., & Stilman, M. (2012 November). Robust and efficient communication for real-time multi-process robot software. In 2012 12th IEEE-RAS International Conference, on Humanoid Robots (Humanoids) (pp. 316–322). IEEE.Google Scholar
  8. DARPA Robotic Challenge Finals 2015. Retrieved August 10, 2015, from http://www.theroboticschallenge.org/.
  9. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRefGoogle Scholar
  10. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition.Google Scholar
  11. Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge University Press.Google Scholar
  12. Hauser, K., Bretl, T., Latombe, J. C., Harada, K., & Wilcox, B. (2008). Motion planning for legged robots on varied terrain. The International Journal of Robotics Research, 27(11–12), 1325–1349.CrossRefGoogle Scholar
  13. Hintjens, P. (2013). ZeroMQ: Messaging for many applications. O’Reilly Media, Inc.Google Scholar
  14. Jeong, H., Oh, J., Kim, M., Joo, K., Kweon, I. S., & Oh, J. H. (2015, November). Control strategies for a humanoid robot to drive and then egress a utility vehicle for remote approach. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 811–816). IEEE.Google Scholar
  15. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K. et al. (2003). Biped walking pattern generation by using preview control of zero-moment point. In Proceedings of the IEEE International Conference on Robotics and Automation (Vol. 2, pp. 1620–1626), Taipei, China.Google Scholar
  16. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., & Hirukawa, H. (2001). The 3D linear inverted pendulum model: A simple modeling for a biped walking pattern generation. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robotic Systems, (Vol. 1, pp. 239–246).Google Scholar
  17. Kannala, J., & Brandt, S. S. (2006). A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8), 1335–1340.CrossRefGoogle Scholar
  18. Kim, I., & Oh, J. H. (2013). Inversekinematic control of humanoids under joint constraints. International Journal of Advanced Robotic Systems, 10(74).MathSciNetCrossRefGoogle Scholar
  19. Kim, J. H., Park, S. W., Park, I. W., & Oh, J. H. (2002). Development of a humanoid biped walking robot platform KHR-1-initial design and its performance evaluation. In Proceedings of 3rd IARP International Work on Humanoid and Human Friendly Robotics (pp. 14–21).Google Scholar
  20. Kim, M. S., & Oh, J. H. (2010). Posture control of a humanoid robot with a compliant ankle joint. International Journal of Humanoid Robotics, 7(01), 5–29.CrossRefGoogle Scholar
  21. Lee, I., & Oh, J. H. (2015). Humanoid posture selection for reaching motion and a cooperative balancing controller. Journal of Intelligent & Robotic Systems, 1–16.Google Scholar
  22. Lee, I., Oh, J., Kim, I., & Oh, J. H. (2017). Camera-laser fusion sensor system and environmental recognition for humanoids in disaster scenarios. Journal of Mechanical Science and Technology, 31(6), 2997–3003.CrossRefGoogle Scholar
  23. Levenberg, K. (1944). A method for the solution of certain problems nonlinear in least square. Quarterly of Applied Mathematics, 2, 164–168.MathSciNetCrossRefGoogle Scholar
  24. Lim, J., & Oh, J. H. (2015). Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control. Journal of Field Robotics.CrossRefGoogle Scholar
  25. Lim, J., Shim, I., Sim, O., Joe, H., Kim, I., Lee, J. et al. (2015, November). Robotic software system for the disaster circumstances: System of team KAIST in the DARPA Robotics Challenge Finals. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 1161–1166). IEEE.Google Scholar
  26. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.MathSciNetCrossRefGoogle Scholar
  27. Nakamura, Y., & Hanafusa, H. (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement, and Control, 108(3), 163–171.CrossRefGoogle Scholar
  28. Oh, J., & Oh, J. H. (2015). A modified perturbation/correlation method for force-guided assembly. Journal of Mechanical Science and Technology, 29(12), 5437–5446.MathSciNetCrossRefGoogle Scholar
  29. Park, I. W., Kim, J. Y., Lee, J., & Oh, J. H. (2005, December). Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot 3: HUBO). In 2005 5th IEEE-RAS International Conference on Humanoid Robots (pp. 321–326). IEEE.Google Scholar
  30. Scaramuzza, D., Martinelli, A., & Siegwart, R. (2006). A toolbox for easily calibrating omnidirectional cameras. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5695–5701).Google Scholar
  31. Shim. I., Shin. S., Bok. Y., Joo. K., Choi. D.-G., Lee. J.-Y. et al. (2015). Vision system and depth processing for DRC-HUBO+. arXiv:1509.06114.
  32. Shimizu, M., Kakuya, H., Yoon, W. K., Kitagaki, K., & Kosuge, K. (2008). Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution. IEEE Transactions on Robotics 24(5), 1131–1142.CrossRefGoogle Scholar
  33. Stasse, O., Saïdi, F., Yokoi, K., Verrelst, B., Vanderborght, B., Davison, A. et al. (2008). Integrating walking and vision to increase humanoid autonomy. International Journal of Humanoid Robotics, 5(02), 287–310.Google Scholar
  34. Supervirord| A Process Control System. Retrieved August 12, 2015, from http://supervisord.org/.
  35. Tsai, L. W. (1999). Robot analysis: The mechanics of serial and parallel manipulators. Wiley.Google Scholar
  36. Wampler, C. W. (1986). Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Transactions on Systems, Man and Cybernetics, 16(1), 93–101.CrossRefGoogle Scholar
  37. Xenomai| Real-time framework for Linux. Retrieved June 11, 2015, from http://xenomai.org/.
  38. Yoo, D., Park, S., Lee, J.-Y., Paek, A., & Kweon, I.S. (2015). AttentionNet: Aggregating weak directions for accurate object detection. CoRR, abs/1506.07704.Google Scholar
  39. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330–1334.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jeongsoo Lim
    • 1
  • Hyoin Bae
    • 1
  • Jaesung Oh
    • 1
  • Inho Lee
    • 1
  • Inwook Shim
    • 1
  • Hyobin Jung
    • 1
  • Hyun Min Joe
    • 1
  • Okkee Sim
    • 1
  • Taejin Jung
    • 1
  • Seunghak Shin
    • 1
  • Kyungdon Joo
    • 1
  • Mingeuk Kim
    • 1
  • Kangkyu Lee
    • 1
  • Yunsu Bok
    • 1
  • Dong-Geol Choi
    • 1
  • Buyoun Cho
    • 1
  • Sungwoo Kim
    • 1
  • Jungwoo Heo
    • 1
  • Inhyeok Kim
    • 1
  • Jungho Lee
    • 1
  • In So Kwon
    • 1
  • Jun-Ho Oh
    • 1
  1. 1.KAISTDaejeonSouth Korea

Personalised recommendations