Advertisement

Team SNU’s Control Strategies to Enhancing Robot’s Capability: Lessons from the DARPA Robotics Challenge Finals 2015

  • Sanghyun Kim
  • Mingon Kim
  • Jimin Lee
  • Soonwook Hwang
  • Joonbo Chae
  • Beomyeong Park
  • Hyunbum Cho
  • Jaehoon Sim
  • Jaesug Jung
  • Hosang Lee
  • Seho Shin
  • Minsung Kim
  • Joonwoo Ahn
  • Wonje Choi
  • Yisoo Lee
  • Sumin Park
  • Jiyong Oh
  • Yongjin Lee
  • Sangkuk Lee
  • Myunggi Lee
  • Sangyup Yi
  • Kyong-Sok K. C. Chang
  • Nojun Kwak
  • Jaeheung Park
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 121)

Abstract

This paper presents the technical approaches used and experimental results obtained by Team SNU at the DARPA Robotics Challenge (DRC) Finals 2015. Team SNU is one of the newly qualified teams, unlike the 12 teams who previously participated in the December 2013 DRC Trials. The hardware platform THORMANG, which we used, has been developed by ROBOTIS. THORMANG is one of the smallest robots at the DRC Finals. Based on this platform, we focused on developing software architecture and controllers in order to perform complex tasks in disaster response situations and modifying hardware modules to maximize manipulability. Ensuring stability and modularization are two main keywords in the technical approaches of the architecture. We designed our interface and controllers to achieve a higher robustness level against disaster situations. Moreover, we concentrated on developing our software architecture by integrating a number of modules to eliminate software system complexity and programming errors. With these efforts on the hardware and software, we have successfully finished the competition without falling and ranked 12th out of 23 teams. This paper is concluded with a number of lessons learned by analyzing the DRC Finals 2015.

Notes

Acknowledgements

This research was supported by the MOTIE under the robot industry core technology development project (No. 10050036) supervised by the KEIT. Also, this work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the MSIP (No. NRF-2015R1A2A1A10055798). We would like to thank Team ROBOTIS for providing THORMANG and technical support. We also would like to thank Jeeho Ahn and Seungyeon Kim who provided support during development and competition.

References

  1. Burke, J., & Murphy, R. (2004). Human-robot interaction in USAR technical search: Two heads are better than one. In 13th IEEE International Workshop on Robot and Human Interactive Communication, 2004. ROMAN 2004 (pp. 307–312). IEEE.Google Scholar
  2. Buss, S. R. (2004). Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation, 17(1–19), 16.Google Scholar
  3. Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004). Visual categorization with bags of keypoints. In Workshop on Statistical Learning in Computer Vision (Vol. 1, pp. 1–2), ECCV. Prague.Google Scholar
  4. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, CVPR 2005 (Vol. 1, pp. 886–893). IEEE.Google Scholar
  5. Dariush, B., Hammam, G. B., & Orin, D. (2010a). Constrained resolved acceleration control for humanoids. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 710–717). IEEE.Google Scholar
  6. Dariush, B., Zhu, Y., Arumbakkam, A., & Fujimura, K. (2010b). Constrained closed loop inverse kinematics. In 2010 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2499–2506). IEEE.Google Scholar
  7. Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A. M. (2003). The many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2), 114–131.CrossRefGoogle Scholar
  8. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., et al. (2015). An architecture for online affordance-based perception and whole-body planning. Journal of Field Robotics, 32(2), 229–254.CrossRefGoogle Scholar
  9. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRefGoogle Scholar
  10. Guizzo, E., & Ackerman, E. (2015). The hard lessons of DARPA’s robotics challenge [news]. Spectrum, IEEE, 52(8), 11–13.CrossRefGoogle Scholar
  11. Hartanto, R., & Eich, M. (2014). Reliable, cloud-based communication for multi-robot systems. In 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–8). IEEE.Google Scholar
  12. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics, 32(2), 192–208.CrossRefGoogle Scholar
  13. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., et al. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE International Conference on Robotics and Automation, 2003, Proceedings. ICRA’03 (Vol. 2, pp. 1620–1626). IEEE.Google Scholar
  14. Kaneko, K., Morisawa, M., Kajita, S., Nakaoka, S., Sakaguchi,T., Cisneros, R., et al. (2015). Humanoid robot HRP-2KAI: Improvement of HRP-2 towards disaster response tasks. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 132–139). IEEE.Google Scholar
  15. Kim, J., Kim, M., & Park, J. (2016). Improvement of humanoid walking control by compensating actuator elasticity. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (pp. 29–34). IEEE.Google Scholar
  16. Kim, J. Y., Park, I. W., & Oh, J. H. (2007). Walking control algorithm of biped humanoid robot on uneven and inclined floor. Journal of Intelligent and Robotic Systems, 48(4), 457–484.CrossRefGoogle Scholar
  17. Kim, S., Kim, M., Lee, J., Hwang, S., Chae, J., Park, B., et al. (2015). Approach of team SNU to the DARPA robotics challenge finals. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 777–784). IEEE.Google Scholar
  18. Komati, B., Clévy, C., & Lutz, P. (2014). Force tracking impedance control with unknown environment at the microscale. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5203–5208). IEEE.Google Scholar
  19. Legnani, G., & Faglia, R. (1992). Harmonic drive transmissions: The effects of their elasticity, clearance and irregularity on the dynamic behaviour of an actual scara robot. Robotica, 10(04), 369–375.CrossRefGoogle Scholar
  20. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRefGoogle Scholar
  21. McGill, S., Yi, S. J., & Lee, D. D. (2015). Team THOR’s adaptive autonomy for disaster response humanoids. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 453–460). IEEE.Google Scholar
  22. Nishiwaki, K., & Kagami, S. (2011). Simultaneous planning of COM and ZMP based on the preview control method for online walking control. In 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 745–751). IEEE.Google Scholar
  23. Oda, N., & Nakane, H. (2008). An approach of motion compensation for biped walking robots with structural deformation. In 10th IEEE International Workshop on Advanced Motion Control, 2008. AMC’08 (pp. 278–283). IEEE.Google Scholar
  24. Oda, N., & Yoneda, J. (2013). Experimental evaluation of vision-based ZMP detection for biped walking robot. In 2013 IEEE International Symposium on Industrial Electronics (ISIE) (pp. 1–6). IEEE.Google Scholar
  25. Østergaard, E. H., Kassow, K., Beck, R., & Lund, H. H. (2006). Design of the atron lattice-based self-reconfigurable robot. Autonomous Robots, 21(2), 165–183.CrossRefGoogle Scholar
  26. Park, B., Cho, H., Choi, W., & Park, J. (2015). Wall cutting strategy for circular hole using humanoid robot. In 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) (pp. 564–569). IEEE.Google Scholar
  27. Rohmer, E., Singh, S. P., & Freese, M. (2013). V-REP: A versatile and scalable robot simulation framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1321–1326). IEEE.Google Scholar
  28. Rouleau, M., & Hong, D. (2014). Design of an underactuated robotic end-effector with a focus on power tool manipulation. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers.Google Scholar
  29. Rouleau, M. T. (2015). Design and evaluation of an underactuated robotic gripper for manipulation associated with disaster response. Ph.D. thesis, Virginia Tech.Google Scholar
  30. Sensinger, J. W. & Lipsey, J. H. (2012). Cycloid vs. harmonic drives for use in high ratio, single stage robotic transmissions. In 2012 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4130–4135). IEEE.Google Scholar
  31. Smola, A. J., & Schölkopf, B. (1998). Learning with kernels. Citeseer.Google Scholar
  32. Stentz, A., Herman, H., Kelly, A., Meyhofer, E., Haynes, G. C., Stager, D., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics, 32(2), 209–228.CrossRefGoogle Scholar
  33. Yi, S. (2008). Extendable modular distribute service kernel for robot s/w framework. Master’s thesis, POSTECH.Google Scholar
  34. Yi, S. J., McGill, S. G., Vadakedathu, L., He, Q., Ha, I., Han, J., et al. (2015). Team THOR’s entry in the DARPA robotics challenge trials 2013. Journal of Field Robotics, 32(3), 315–335.CrossRefGoogle Scholar
  35. Yim, M., Shen, W. M., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007). Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1), 43–52.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sanghyun Kim
    • 1
  • Mingon Kim
    • 1
  • Jimin Lee
    • 1
  • Soonwook Hwang
    • 1
  • Joonbo Chae
    • 1
  • Beomyeong Park
    • 1
  • Hyunbum Cho
    • 1
  • Jaehoon Sim
    • 1
  • Jaesug Jung
    • 1
  • Hosang Lee
    • 1
  • Seho Shin
    • 1
  • Minsung Kim
    • 1
  • Joonwoo Ahn
    • 1
  • Wonje Choi
    • 1
  • Yisoo Lee
    • 1
  • Sumin Park
    • 1
  • Jiyong Oh
    • 2
  • Yongjin Lee
    • 3
  • Sangkuk Lee
    • 1
  • Myunggi Lee
    • 1
  • Sangyup Yi
    • 4
  • Kyong-Sok K. C. Chang
    • 4
  • Nojun Kwak
    • 1
  • Jaeheung Park
    • 1
    • 5
  1. 1.Seoul National UniversitySuwonKorea
  2. 2.Electronics and Telecommunications Research InstituteDaeguKorea
  3. 3.LG CNSSeoulKorea
  4. 4.Wonik Robotics CoSeongnamKorea
  5. 5.Advanced Institutes of Convergence TechnologySuwonKorea

Personalised recommendations