Biomedical Consequences of Exposure to Space Radiation

  • Erik Seedhouse
Part of the SpringerBriefs in Space Development book series (BRIEFSSPACE)


Please note that figures were not sequentially cited in the text, and have been renumbered both in the text as follows


  1. 1.
    Pinsky LS, Osborne WZ, Bailey JV, Benson RE, Thompson LF. Light flashes observed by astronauts on Apollo 11 through Apollo 17. Science. 1974;183(4128):957–9.ADSCrossRefGoogle Scholar
  2. 2.
    Cucinotta FA, Wang H, Huff JL. Risk of acute or late central nervous system effects from radiation exposure. Human Health and Performance Risks of Space Exploration Missions NASA SP 2009, 2009, p. 345. Chapter 6.Google Scholar
  3. 3.
    Curtis SB, Vazquez ME, Wilson JW, Atwell W, Kim M, Capala J. Cosmic ray hit frequencies in critical sites in the central nervous system. Adv. Space Res. 1998;22(2):197–207.ADSCrossRefGoogle Scholar
  4. 4.
    Zeitlin CJ, Hassler DM, Cucinotta FA, Ehresmann B, Wimmer-Schweingruber RF, et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science. 2013;340:1080–4.ADSCrossRefGoogle Scholar
  5. 5.
    Weatherall D. The use of non-human primates in research. Sponsored by the UK Medical Research Council, Welcome Trust, and the Royal Society, 2006.Google Scholar
  6. 6.
    Singh VK, Newman VL, Berg AN, MacVittie TJ. Animal models for acute radiation syndrome drug discovery. Expert Opin. Drug Discovery. 2015;10(5):497–517.CrossRefGoogle Scholar
  7. 7.
    Denisova NA, Shukitt-Hale B, Rabin BM, Joseph JA. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation. Radiat. Res. 2002;158:725–34.ADSCrossRefGoogle Scholar
  8. 8.
    Haley GE, Yeiser L, Olsen RH, Davis MJ, Johnson LA, Raber J. Early effects of whole-body 56Fe irradiation on hippocampal function in C57BL/6J mice. Radiat. Res. 2013;179(5):590–6.ADSCrossRefGoogle Scholar
  9. 9.
    Britten RA, Davis LK, Johnson AM, Keeney S, Siegel A, Sanford LD, Singletary SJ, Lonart G. Low (20 cGy) doses of 1 GeV/u 56Fe-particle radiation lead to a persistent reduction in the spatial learning ability of rats. Radiat. Res. 2012;177(2):146–51.ADSCrossRefGoogle Scholar
  10. 10.
    Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003;63(14):4021–7.Google Scholar
  11. 11.
    Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 1992;99(2):95–231.CrossRefGoogle Scholar
  12. 12.
    Casadesus G, Shukitt-Hale B, Stellwagen HM, Smith MA, Rabin BM, Joseph JA. Hippo-campal neurogenesis and PSA-NCAM expression following exposure to 56Fe particles mimics that seen during aging in rats. Exp. Gerontol. 2005;40:249–54.CrossRefGoogle Scholar
  13. 13.
    Riviera PD, Shih H, LeBlanc JA, Cole MG, Amaral AZ, Mukherjee S, et al. Acute and fractionated exposure to high-let 56Fe HZE-particle radiation both result in similar long-term deficits in adult hippocampal neurogenesis. Radiat. Res. 2014;180:658–67.ADSCrossRefGoogle Scholar
  14. 14.
    Limoli CL, Giedzinski E, Rola R, Otsuka S, Palmer TD, Fike JR. Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat. Res. 2004;161(1):17–27.ADSCrossRefGoogle Scholar
  15. 15.
    Limoli CL, Giedzinski Baure EJ, Rola R, Fike JR. Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiat. Environ. Biophys. 2007;46(2):167–72.CrossRefGoogle Scholar
  16. 16.
    Manda K, Ueno M, Anzai K. Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha-lipoic acid. Behav. Brain Res. 2008;187(2):387–95.CrossRefGoogle Scholar
  17. 17.
    Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297:842–57.CrossRefGoogle Scholar
  18. 18.
    Vlkolinský R, Krucker T, Smith AL, Lamp TC, Nelson GA, Obenaus A. Effects of lipopolysaccharide on 56Fe-particle radiation-induced impairment of synaptic plasticity in the mouse hippocampus. Radiat. Res. 2007;168(5):462–47.ADSCrossRefGoogle Scholar
  19. 19.
    Vlkolinský R, Krucker T, Nelson GA, Obenaus A. 56Fe-particle radiation reduces neuronal output and attenuates lipopolysaccharide-induced inhibition of long-term potentiation in the mouse hippocampus. Radiat. Res. 2008;169(5):523–53.ADSCrossRefGoogle Scholar
  20. 20.
    Vlkolinsky V, Titova E, Krucker T, Chi BB, Staufenbiel M, Nelson GA, Obenaus A. Exposure to 56Fe-particle radiation accelerates electrophysiological alterations in the hippocampus of APP23 transgenic mice. Radiat. Res. 2010;173(3):342–52.ADSCrossRefGoogle Scholar
  21. 21.
    Cherry JD, Liu B, Frost JL, Lemere CA, Williams JP, et al. Galactic cosmic radiation leads to cognitive impairment and increased Aβ plaque accumulation in a mouse model of Alzheimer’s disease. PLoS ONE. 2012;7(12):e53275.ADSCrossRefGoogle Scholar
  22. 22.
    Lloyd SA, Bandstra ER, Travis ND, Nelson GA, Bourland JD, Pecaut MJ, Gridley DS, Willey JS, Bateman TA. Spaceflight-relevant types of ionizing radiation and cortical bone: potential LET effect? Adv. Space Res. 2008;42:1889–97.ADSCrossRefGoogle Scholar
  23. 23.
    Hopewell JW. Radiation-therapy effects on bone density. Med. Pediatr. Oncol. 2003;41:208–11.CrossRefGoogle Scholar
  24. 24.
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J. Bone Miner. Res. 2004;19:1006–12.CrossRefGoogle Scholar
  25. 25.
    Guise TA. Bone loss and fracture risk associated with cancer therapy. Oncologist. 2006;11:1121–31.CrossRefGoogle Scholar
  26. 26.
    Overgaard M. Spontaneous radiation-induced rib fractures in breast cancer patients treated with postmastectomy irradiation. A clinical radiobiological analysis of the influence of fraction size and dose-response relationships on late bone damage. Acta Oncol. 1988;27:117–22.CrossRefGoogle Scholar
  27. 27.
    Rabelo GD, Beletti ME, Dechichi P. Histological analysis of the alterations on cortical bone channels network after radiotherapy: a rabbit study. Microsc. Res. Tech. 2010;73:1015–8.CrossRefGoogle Scholar
  28. 28.
    Sakurai T, Sawada Y, Yoshimoto M, Kawai M, Miyakoshi J. Radiation-induced reduction of osteoblast differentiation in C2C12 cells. J. Radiat. Res. 2007;48:515–21.ADSCrossRefGoogle Scholar
  29. 29.
    Sugimoto M, Takahashi S, Toguchida J, Kotoura Y, Shibamoto Y, Yamamuro T. Changes in bone after high-dose irradiation. Biomechanics and histomorphology. J. Bone Joint Surg. Br. 1991;73:492–7.CrossRefGoogle Scholar
  30. 30.
    Willey JS, Lloyd SA, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, Norrdin RW, Bateman TA. Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat. Res. 2008;170:388–92.ADSCrossRefGoogle Scholar
  31. 31.
    Green DE, Adler BJ, Chan ME, Rubin CT. Devastation of adult stem cell pools by irradiation precedes collapse of trabecular bone quality and quantity. J Bone Miner Res. 2012;27:749–59.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Erik Seedhouse
    • 1
  1. 1.Applied Aviation SciencesEmbry-Riddle Aeronautical UniversityDaytona BeachUSA

Personalised recommendations