Skip to main content

Radiation: A Primer

  • Chapter
  • First Online:
Book cover Space Radiation and Astronaut Safety

Part of the book series: SpringerBriefs in Space Development ((BRIEFSSPACE))

  • 1137 Accesses

Abstract

One of the most challenging parts for the human journey to Mars is the risk of radiation exposure and the inflight and long-term health consequences of the exposure. This ionizing radiation travels through living tissues, depositing energy that causes structural damage to DNA and alters many cellular processes.

—NASA Space Radiation Element Scientist Lisa Simonsen, Ph.D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akopova AB, Manaseryan MM, Melkonyan AA, Tatikyan SS, Potapov Y. Radiation measurement on the International Space Station. Radiat. Meas. 2005;39:225–8.

    Article  Google Scholar 

  2. Kodaira S, Kawashima H, Kitamura H, Kurano M, Uchihori Y, Yasuda N, Ogura K, Kobayashi I, Suzuki A, Koguchi Y, Akatov YA, Shurshakov VA, Tolochek RV, Krasheninnikova TK, Ukraintsev AD, Gureeva EA, Kuznetsov VN, Benton ER. Analysis of radiation dose variations measured by passive dosimeters onboard the International Space Station during the solar quiet period (2007-2008). Radiat. Meas. 2013;49:95–102.

    Article  Google Scholar 

  3. Cucinotta FA, Kim MY, Chappell L. Space radiation cancer risk projections and uncertainties-2012. NASA TP 2013-217375, 2013.

    Google Scholar 

  4. Getselev I, Rumin S, Sobolevsky N, Ufimtsev M, Podzolko M. Absorbed dose of secondary neutrons from galactic cosmic rays inside the international space station. Adv. Space Res. 2004;34:1429–32.

    Article  ADS  Google Scholar 

  5. Reitz G, Berger T, Bilski P, Facius R, Hajek M, Petrov VP, Puchalska M, Zhou D, Bossler J, Akatov YA, Shurshakov VA, Olko P, Ptaszliewicz M, Bergmann R, Fugger M, Vana N, Beaujean R, Burmeister S, Bartlett D, Hager L, Palfalvi JK, Szabó J, O’Sullivan D, Kitamura H, Uchihori Y, Yasuda N, Nagamatsu A, Tawara H, Benton ER, Gaza R, McKeever SW, Sawakuchi G, Yukihara EG, Cucinotta FA, Semones E, Zapp EN, Miller J, Dettmann J. Astronaut’s organ doses inferred from measurements in a human phantom outside the International Space Station. Radiat. Res. 2009;171(2):225–35.

    Article  ADS  Google Scholar 

  6. Reames DV. The two sources of solar energetic particles. Space Sci. Rev. 2013;175:53–92.

    Article  ADS  Google Scholar 

  7. Miroshnichenko AE, et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 2015;6:8069.

    Article  ADS  Google Scholar 

  8. Kim M-H, Hu S, Nounu HN, Cucinotta FA. Development of graphical user interface for ARRBOD (acute radiation risk and BRYNTRN organ dose projection). Hanover: Center for Aerospace Information; 2010. NASA TP-2010-216116.

    Google Scholar 

  9. Zeitlin C, Hassler DM, Cucinotta FA, Ehresmann B, Wimmer-Schweingruber RF, Brinza DE, et al. Measurements of energetic particle radiation in transit to Mars on the Mars science laboratory. Science. 2013;340:1080–4.

    Article  ADS  Google Scholar 

  10. Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Ehresmann B, Rafkin S, Eigenbrode JL, et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover. Science. 2014;343:1244797.

    Article  Google Scholar 

  11. Dietze G, et al. Assessment of astronaut exposures in space. ICRP publication 123. Ann. ICRP. 2013;42:2013.

    Article  Google Scholar 

  12. Cucinotta FA, Kim MY, Willingham V, George KA. Physical and biological organ dosimetry analysis for international space station astronauts. Radiat. Res. 2008;170(1):127–38.

    Article  ADS  Google Scholar 

  13. Dicello J, Christian A, Cucinotta F, Gridley D, Kathirithamby R, Mann J, et al. In vivo mammary tumourigenesis in the Sprague-Dawley rat and microdosimetric correlates. Phys. Med. Biol. 2004;49:3817–30.

    Article  Google Scholar 

  14. Cucinotta FA, Alp M, Sulzman FM, Wang M. Space radiation risks to the central nervous system. Life Sci. Space Res. 2014;2:54–69.

    Article  ADS  Google Scholar 

  15. Barcellos-Hoff MH, Brooks AL. Extracellular signaling via the microenvironment: a hypothesis relating carcinogenesis, bystander effects and genomic instability. Radiat. Res. 2001;156:618–27.

    Article  ADS  Google Scholar 

  16. Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol. 2007;184:69–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seedhouse, E. (2018). Radiation: A Primer. In: Space Radiation and Astronaut Safety. SpringerBriefs in Space Development. Springer, Cham. https://doi.org/10.1007/978-3-319-74615-9_1

Download citation

Publish with us

Policies and ethics