Cognitive Enhancers

Chapter

Abstract

Cognitive impairment is a common presenting symptom in a variety of neurologic conditions. This chapter follows the case of a patient who reports a mild decline in cognitive functioning, which gradually progresses to impairments across multiple cognitive domains and interference with daily activities. Treatment options across the spectrum from a mild neurocognitive disorder to the terminal stage of Alzheimer’s disease are discussed. Recommendations regarding treatment initiation with cholinesterase inhibitors, dose titration, combination therapy with memantine, treatment discontinuation, and management of side effects are presented. The role of other therapeutic interventions, such as vitamins, dietary supplements, and lifestyle-based interventions, is also discussed. Finally, a brief survey of the treatment of cognitive impairment in other neurologic disorders, such as multiple sclerosis and Parkinson’s disease dementia, is provided.

Keywords

Alzheimer’s disease Cholinesterase inhibitors Cognitive enhancers Cognitive impairment Dementia Memantine Neurocognitive disorder 

References

  1. 1.
    Roberts RO, Knopman DS, Mielke MM, Cha RH, Pankratz VS, Christianson TJ, et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology. 2014;82(4):317–25.  https://doi.org/10.1212/WNL.0000000000000055.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mitchell AJ, Shiri-Feshki M. Temporal trends in the long term risk of progression of mild cognitive impairment: a pooled analysis. J Neurol Neurosurg Psychiatry. 2008;79(12):1386–91.  https://doi.org/10.1136/jnnp.2007.142679.CrossRefPubMedGoogle Scholar
  3. 3.
    Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 2015;11(6):718–26.  https://doi.org/10.1016/j.jalz.2015.05.016.CrossRefPubMedGoogle Scholar
  4. 4.
    Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23):2379–88.  https://doi.org/10.1056/NEJMoa050151.CrossRefPubMedGoogle Scholar
  5. 5.
    Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244.  https://doi.org/10.1371/journal.pone.0012244.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang YP, Miao R, Li Q, Wu T, Ma F. Effects of DHA supplementation on hippocampal volume and cognitive function in older adults with mild cognitive impairment: a 12-month randomized, double-blind, placebo-controlled trial. J Alzheimers Dis. 2016;55(2):497–507.  https://doi.org/10.3233/JAD-160439.CrossRefGoogle Scholar
  7. 7.
    Desideri G, Kwik-Uribe C, Grassi D, Necozione S, Ghiadoni L, Mastroiacovo D, et al. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: the Cocoa, Cognition, and Aging (CoCoA) study. Hypertension. 2012;60(3):794–801.  https://doi.org/10.1161/HYPERTENSIONAHA.112.193060.CrossRefPubMedGoogle Scholar
  8. 8.
    Suzuki T, Shimada H, Makizako H, Doi T, Yoshida D, Ito K, et al. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS One. 2013;8(4):e61483.  https://doi.org/10.1371/journal.pone.0061483.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vidovich MR, Lautenschlager NT, Flicker L, Clare L, McCaul K, Almeida OP. The PACE study: a randomized clinical trial of cognitive activity strategy training for older people with mild cognitive impairment. Am J Geriatr Psychiatry. 2015;23(4):360–72.  https://doi.org/10.1016/j.jagp.2014.04.002.CrossRefPubMedGoogle Scholar
  10. 10.
    Hajjar I, Hart M, Chen YL, Mack W, Milberg W, Chui H, et al. Effect of antihypertensive therapy on cognitive function in early executive cognitive impairment: a double-blind randomized clinical trial. Arch Intern Med. 2012;172(5):442–4.  https://doi.org/10.1001/archinternmed.2011.1391.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thal LJ, Ferris SH, Kirby L, Block GA, Lines CR, Yuen E, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology. 2005;30(6):1204–15.  https://doi.org/10.1038/sj.npp.1300690.CrossRefPubMedGoogle Scholar
  12. 12.
    Gomez-Isla T, Blesa R, Boada M, Clarimon J, Del Ser T, Domenech G, et al. A randomized, double-blind, placebo controlled-trial of triflusal in mild cognitive impairment: the TRIMCI study. Alzheimer Dis Assoc Disord. 2008;22(1):21–9.  https://doi.org/10.1097/WAD.0b013e3181611024.CrossRefPubMedGoogle Scholar
  13. 13.
    Feldman HH, Ferris S, Winblad B, Sfikas N, Mancione L, He Y, et al. Effect of rivastigmine on delay to diagnosis of Alzheimer’s disease from mild cognitive impairment: the InDDEx study. Lancet Neurol. 2007;6(6):501–12.  https://doi.org/10.1016/S1474-4422(07)70109-6.CrossRefPubMedGoogle Scholar
  14. 14.
    Winblad B, Gauthier S, Scinto L, Feldman H, Wilcock GK, Truyen L, et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology. 2008;70(22):2024–35.  https://doi.org/10.1212/01.wnl.0000303815.69777.26.CrossRefPubMedGoogle Scholar
  15. 15.
    Peters O, Lorenz D, Fesche A, Schmidtke K, Hull M, Perneczky R, et al. A combination of galantamine and memantine modifies cognitive function in subjects with amnestic MCI. J Nutr Health Aging. 2012;16(6):544–8.CrossRefGoogle Scholar
  16. 16.
    Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis. 2016;51(2):501–14.  https://doi.org/10.3233/JAD-150493.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Russ TC, Morling JR. Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst Rev. 2012;9:CD009132.  https://doi.org/10.1002/14651858.CD009132.pub2.CrossRefGoogle Scholar
  18. 18.
    Ashby EL, Kehoe PG. Current status of renin-aldosterone angiotensin system-targeting anti-hypertensive drugs as therapeutic options for Alzheimer’s disease. Expert Opin Investig Drugs. 2013;22(10):1229–42.  https://doi.org/10.1517/13543784.2013.812631.CrossRefPubMedGoogle Scholar
  19. 19.
    Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, et al. The prevention of dementia with antihypertensive treatment: new evidence from the systolic hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162(18):2046–52.CrossRefGoogle Scholar
  20. 20.
    ADAPT Research Group, Lyketsos CG, Breitner JC, Green RC, Martin BK, Meinert C, et al. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology. 2007;68(21):1800–8.  https://doi.org/10.1212/01.wnl.0000260269.93245.d2.CrossRefGoogle Scholar
  21. 21.
    Breitner JC, Baker LD, Montine TJ, Meinert CL, Lyketsos CG, Ashe KH, et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement. 2011;7(4):402–11.  https://doi.org/10.1016/j.jalz.2010.12.014.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    ADAPT-FS Research Group. Follow-up evaluation of cognitive function in the randomized Alzheimer’s disease anti-inflammatory prevention trial and its follow-up study. Alzheimers Dement. 2015;11(2):216–25 e1.  https://doi.org/10.1016/j.jalz.2014.03.009.CrossRefGoogle Scholar
  23. 23.
    Pietri S, Maurelli E, Drieu K, Culcasi M. Cardioprotective and anti-oxidant effects of the terpenoid constituents of Ginkgo biloba extract (EGb 761). J Mol Cell Cardiol. 1997;29(2):733–42.  https://doi.org/10.1006/jmcc.1996.0316.CrossRefPubMedGoogle Scholar
  24. 24.
    Snitz BE, O’Meara ES, Carlson MC, Arnold AM, Ives DG, Rapp SR, et al. Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA. 2009;302(24):2663–70.  https://doi.org/10.1001/jama.2009.1913.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    DeKosky ST, Williamson JD, Fitzpatrick AL, Kronmal RA, Ives DG, Saxton JA, et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA. 2008;300(19):2253–62.  https://doi.org/10.1001/jama.2008.683.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vellas B, Coley N, Ousset PJ, Berrut G, Dartigues JF, Dubois B, et al. Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol. 2012;11(10):851–9.  https://doi.org/10.1016/S1474-4422(12)70206-5.CrossRefPubMedGoogle Scholar
  27. 27.
    Birks J, Grimley EJ. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2007;2:CD003120.  https://doi.org/10.1002/14651858.CD003120.pub2.CrossRefGoogle Scholar
  28. 28.
    de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592–600.  https://doi.org/10.1002/gps.2758.CrossRefPubMedGoogle Scholar
  29. 29.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–83.  https://doi.org/10.1056/NEJMoa011613.CrossRefPubMedGoogle Scholar
  30. 30.
    Clarke R, Bennett D, Parish S, Lewington S, Skeaff M, Eussen SJ, et al. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr. 2014;100(2):657–66.  https://doi.org/10.3945/ajcn.113.076349.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kryscio RJ, Abner EL, Schmitt FA, Goodman PJ, Mendiondo M, Caban-Holt A, et al. A randomized controlled Alzheimer’s disease prevention trial’s evolution into an exposure trial: the PREADViSE trial. J Nutr Health Aging. 2013;17(1):72–5.  https://doi.org/10.1007/s12603-012-0083-3.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, et al. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol. 2017;74(5):567–73.CrossRefGoogle Scholar
  33. 33.
    Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol. 2003;60(7):940–6.  https://doi.org/10.1001/archneur.60.7.940.CrossRefPubMedGoogle Scholar
  34. 34.
    Yurko-Mauro K, McCarthy D, Rom D, Nelson EB, Ryan AS, Blackwell A, et al. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 2010;6(6):456–64.  https://doi.org/10.1016/j.jalz.2010.01.013.CrossRefPubMedGoogle Scholar
  35. 35.
    Dangour AD, Allen E, Elbourne D, Fasey N, Fletcher AE, Hardy P, et al. Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. Am J Clin Nutr. 2010;91(6):1725–32.  https://doi.org/10.3945/ajcn.2009.29121.CrossRefPubMedGoogle Scholar
  36. 36.
    van de Rest O, Geleijnse JM, Kok FJ, van Staveren WA, Dullemeijer C, Olderikkert MG, et al. Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology. 2008;71(6):430–8.  https://doi.org/10.1212/01.wnl.0000324268.45138.86.CrossRefPubMedGoogle Scholar
  37. 37.
    Sydenham E, Dangour AD, Lim WS. Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst Rev. 2012;6:CD005379.  https://doi.org/10.1002/14651858.CD005379.pub3.CrossRefGoogle Scholar
  38. 38.
    Martinez-Lapiscina EH, Clavero P, Toledo E, Estruch R, Salas-Salvado J, San Julian B, et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;84(12):1318–25.  https://doi.org/10.1136/jnnp-2012-304792.CrossRefPubMedGoogle Scholar
  39. 39.
    Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, et al. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med. 2011;269(1):107–17.  https://doi.org/10.1111/j.1365-2796.2010.02281.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300(9):1027–37.  https://doi.org/10.1001/jama.300.9.1027.CrossRefPubMedGoogle Scholar
  41. 41.
    Strohle A, Schmidt DK, Schultz F, Fricke N, Staden T, Hellweg R, et al. Drug and exercise treatment of Alzheimer disease and mild cognitive impairment: a systematic review and meta-analysis of effects on cognition in randomized controlled trials. Am J Geriatr Psychiatry. 2015;23(12):1234–49.  https://doi.org/10.1016/j.jagp.2015.07.007.CrossRefPubMedGoogle Scholar
  42. 42.
    Gates N, Fiatarone Singh MA, Sachdev PS, Valenzuela M. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013;21(11):1086–97.  https://doi.org/10.1016/j.jagp.2013.02.018.CrossRefPubMedGoogle Scholar
  43. 43.
    Sungkarat S, Boripuntakul S, Chattipakorn N, Watcharasaksilp K, Lord SR. Effects of tai chi on cognition and fall risk in older adults with mild cognitive impairment: a randomized controlled trial. J Am Geriatr Soc. 2016.  https://doi.org/10.1111/jgs.14594.
  44. 44.
    Lee KS, Lee Y, Back JH, Son SJ, Choi SH, Chung YK, et al. Effects of a multidomain lifestyle modification on cognitive function in older adults: an eighteen-month community-based cluster randomized controlled trial. Psychother Psychosom. 2014;83(5):270–8.  https://doi.org/10.1159/000360820.CrossRefPubMedGoogle Scholar
  45. 45.
    Han JW, Lee H, Hong JW, Kim K, Kim T, Byun HJ, et al. Multimodal cognitive enhancement therapy for patients with mild cognitive impairment and mild dementia: a multi- center, randomized, controlled, double-blind. Crossover Trial J Alzheimers Dis. 2016;55(2):787–96.  https://doi.org/10.3233/JAD-160619.CrossRefGoogle Scholar
  46. 46.
    Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63.  https://doi.org/10.1016/S0140-6736(15)60461-5.CrossRefPubMedGoogle Scholar
  47. 47.
    Vellas B, Carrie I, Gillette-Guyonnet S, Touchon J, Dantoine T, Dartigues JF, et al. Mapt study: a multidomain approach for preventing Alzheimer’s disease: design and baseline data. J Prev Alzheimers Dis. 2014;1(1):13–22.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kivipelto M, Vellas B. Non-pharmacological intervention in populations at high risk of AD dementia: results of the MAPT and LipiDiDiet studies. Symposium 2, Clinical Trials on Alzheimer’s Disease 9th Annual Meeting. San Diego; 2016.Google Scholar
  49. 49.
    Moll van Charante EP, Richard E, Eurelings LS, van Dalen JW, Ligthart SA, van Bussel EF, et al. Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): a cluster-randomised controlled trial. Lancet. 2016;388(10046):797–805.  https://doi.org/10.1016/S0140-6736(16)30950-3.CrossRefPubMedGoogle Scholar
  50. 50.
    Schneider LS. Reduce vascular risk to prevent dementia? Lancet. 2016;388(10046):738–40.  https://doi.org/10.1016/S0140-6736(16)31129-1.CrossRefPubMedGoogle Scholar
  51. 51.
    Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;1:CD005593.  https://doi.org/10.1002/14651858.cd005593.CrossRefGoogle Scholar
  52. 52.
    Rockwood K. Size of the treatment effect on cognition of cholinesterase inhibition in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2004;75(5):677–85.CrossRefGoogle Scholar
  53. 53.
    Tan CC, Yu JT, Wang HF, Tan MS, Meng XF, Wang C, et al. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;41(2):615–31.  https://doi.org/10.3233/JAD-132690.CrossRefPubMedGoogle Scholar
  54. 54.
    Gill SS, Anderson GM, Fischer HD, Bell CM, Li P, Normand SL, et al. Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: a population-based cohort study. Arch Intern Med. 2009;169(9):867–73.  https://doi.org/10.1001/archinternmed.2009.43.CrossRefPubMedGoogle Scholar
  55. 55.
    Park-Wyllie LY, Mamdani MM, Li P, Gill SS, Laupacis A, Juurlink DN. Cholinesterase inhibitors and hospitalization for bradycardia: a population-based study. PLoS Med. 2009;6(9):e1000157.  https://doi.org/10.1371/journal.pmed.1000157.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim DH, Brown RT, Ding EL, Kiel DP, Berry SD. Dementia medications and risk of falls, syncope, and related adverse events: meta-analysis of randomized controlled trials. J Am Geriatr Soc. 2011;59(6):1019–31.  https://doi.org/10.1111/j.1532-5415.2011.03450.x.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sheffrin M, Miao Y, Boscardin WJ, Steinman MA. Weight loss associated with cholinesterase inhibitors in individuals with dementia in a national healthcare system. J Am Geriatr Soc. 2015;63(8):1512–8.  https://doi.org/10.1111/jgs.13511.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lai EC, Wong MB, Iwata I, Zhang Y, Hsieh CY, Kao Yang YH, et al. Risk of pneumonia in new users of cholinesterase inhibitors for dementia. J Am Geriatr Soc. 2015;63(5):869–76.  https://doi.org/10.1111/jgs.13380.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lampela P, Tolppanen AM, Tanskanen A, Tiihonen J, Lavikainen P, Hartikainen S, et al. Use of antidementia drugs and risk of pneumonia in older persons with Alzheimer’s disease. Ann Med. 2016:1–10.  https://doi.org/10.1080/07853890.2016.1254349.
  60. 60.
    Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2006;1:CD001190.  https://doi.org/10.1002/14651858.CD001190.pub2.CrossRefGoogle Scholar
  61. 61.
    Birks JS, Chong LY, Grimley EJ. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev. 2015;9:CD001191.  https://doi.org/10.1002/14651858.CD001191.pub4.CrossRefPubMedGoogle Scholar
  62. 62.
    Nieto RA, Deardorff WJ, Grossberg GT. Efficacy of rivastigmine tartrate, transdermal system, in Alzheimer’s disease. Expert Opin Pharmacother. 2016;17(6):861–70.  https://doi.org/10.1517/14656566.2016.1159296.CrossRefPubMedGoogle Scholar
  63. 63.
    Winblad B, Grossberg G, Frolich L, Farlow M, Zechner S, Nagel J, et al. IDEAL: a 6-month, double-blind, placebo-controlled study of the first skin patch for Alzheimer disease. Neurology. 2007;69(4 Suppl 1):S14–22.  https://doi.org/10.1212/01.wnl.0000281847.17519.e0.CrossRefPubMedGoogle Scholar
  64. 64.
    Lovborg H, Jonsson AK, Hagg S. A fatal outcome after unintentional overdosing of rivastigmine patches. Curr Drug Saf. 2012;7(1):30–2.CrossRefGoogle Scholar
  65. 65.
    Important Drug Warning. U.S. Food and Drug Administration. 2010. http://www.fda.gov/downloads/Safety/MedWatch/SafetyInformation/UCM226090.pdf. Accessed 1 Dec 2016.
  66. 66.
    Hager K, Baseman AS, Nye JS, Brashear HR, Han J, Sano M, et al. Effects of galantamine in a 2-year, randomized, placebo-controlled study in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2014;10:391–401.  https://doi.org/10.2147/ndt.s57909.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Aronson S, Van Baelen B, Kavanagh S, Schwalen S. Optimal dosing of galantamine in patients with mild or moderate Alzheimer’s disease: post Hoc analysis of a randomized, double-blind, placebo-controlled trial. Drugs Aging. 2009;26(3):231–9.  https://doi.org/10.2165/00002512-200926030-00004.CrossRefPubMedGoogle Scholar
  68. 68.
    Brodaty H, Corey-Bloom J, Potocnik FC, Truyen L, Gold M, Damaraju CR. Galantamine prolonged-release formulation in the treatment of mild to moderate Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;20(2–3):120–32.  https://doi.org/10.1159/000086613.CrossRefPubMedGoogle Scholar
  69. 69.
    Seltzer B. Galantamine-ER for the treatment of mild-to-moderate Alzheimer’s disease. Clin Interv Aging. 2010;5:1–6.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Emre M. Switching cholinesterase inhibitors in patients with Alzheimer’s disease. Int J Clin Pract Suppl. 2002;127:64–72.Google Scholar
  71. 71.
    Cagnin A, Cester A, Costa B, Ermani M, Gabelli C, Gambina G, et al. Effectiveness of switching to the rivastigmine transdermal patch from oral cholinesterase inhibitors: a naturalistic prospective study in Alzheimer’s disease. Neurol Sci. 2015;36(3):457–63.  https://doi.org/10.1007/s10072-014-2002-3.CrossRefPubMedGoogle Scholar
  72. 72.
    Auriacombe S, Pere JJ, Loria-Kanza Y, Vellas B. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease who failed to benefit from treatment with donepezil. Curr Med Res Opin. 2002;18(3):129–38.  https://doi.org/10.1185/030079902125000471.CrossRefPubMedGoogle Scholar
  73. 73.
    Massoud F, Desmarais JE, Gauthier S. Switching cholinesterase inhibitors in older adults with dementia. Int Psychogeriatr. 2011;23(3):372–8.  https://doi.org/10.1017/s1041610210001985.CrossRefPubMedGoogle Scholar
  74. 74.
    Porsteinsson AP, Grossberg GT, Mintzer J, Olin JT, Group MM-M-S. Memantine treatment in patients with mild to moderate Alzheimer’s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res. 2008;5(1):83–9.CrossRefGoogle Scholar
  75. 75.
    Schneider LS, Dagerman KS, Higgins JP, McShane R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch Neurol. 2011;68(8):991–8.  https://doi.org/10.1001/archneurol.2011.69.CrossRefPubMedGoogle Scholar
  76. 76.
    Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33–44.  https://doi.org/10.1001/jama.2013.282834.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med. 1997;336(17):1216–22.  https://doi.org/10.1056/NEJM199704243361704.CrossRefPubMedGoogle Scholar
  78. 78.
    Miller ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142(1):37–46.CrossRefGoogle Scholar
  79. 79.
    Abner EL, Schmitt FA, Mendiondo MS, Marcum JL, Kryscio RJ. Vitamin E and all-cause mortality: a meta-analysis. Curr Aging Sci. 2011;4(2):158–70.CrossRefGoogle Scholar
  80. 80.
    Kim JM, White RH. Effect of vitamin E on the anticoagulant response to warfarin. Am J Cardiol. 1996;77(7):545–6.CrossRefGoogle Scholar
  81. 81.
    Sano M, Bell KL, Galasko D, Galvin JE, Thomas RG, van Dyck CH, et al. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology. 2011;77(6):556–63.  https://doi.org/10.1212/WNL.0b013e318228bf11.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Feldman HH, Doody RS, Kivipelto M, Sparks DL, Waters DD, Jones RW, et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology. 2010;74(12):956–64.  https://doi.org/10.1212/WNL.0b013e3181d6476a.CrossRefPubMedGoogle Scholar
  83. 83.
    Yang G, Wang Y, Sun J, Zhang K, Liu J. Ginkgo biloba for mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Curr Top Med Chem. 2016;16(5):520–8.CrossRefGoogle Scholar
  84. 84.
    Jiang L, Su L, Cui H, Ren J, Li C. Ginkgo biloba extract for dementia: a systematic review. Shanghai Arch Psychiatry. 2013;25(1):10–21.  https://doi.org/10.3969/j.issn.1002-0829.2013.01.005.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hashiguchi M, Ohta Y, Shimizu M, Maruyama J, Mochizuki M. Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J Pharm Health Care Sci. 2015;1:14.  https://doi.org/10.1186/s40780-015-0014-7.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Tan MS, Yu JT, Tan CC, Wang HF, Meng XF, Wang C, et al. Efficacy and adverse effects of ginkgo biloba for cognitive impairment and dementia: a systematic review and meta-analysis. J Alzheimers Dis. 2015;43(2):589–603.  https://doi.org/10.3233/JAD-140837.CrossRefPubMedGoogle Scholar
  87. 87.
    Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA. 2010;304(17):1903–11.  https://doi.org/10.1001/jama.2010.1510.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Mazereeuw G, Lanctot KL, Chau SA, Swardfager W, Herrmann N. Effects of omega-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol Aging. 2012;33(7):1482. e17-29.  https://doi.org/10.1016/j.neurobiolaging.2011.12.014.CrossRefPubMedGoogle Scholar
  89. 89.
    Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, Basun H, Faxen-Irving G, Garlind A, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006;63(10):1402–8.  https://doi.org/10.1001/archneur.63.10.1402.CrossRefPubMedGoogle Scholar
  90. 90.
    Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A. Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev. 2016;4:CD009002.  https://doi.org/10.1002/14651858.CD009002.pub3.CrossRefPubMedGoogle Scholar
  91. 91.
    Rafii MS, Walsh S, Little JT, Behan K, Reynolds B, Ward C, et al. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology. 2011;76(16):1389–94.  https://doi.org/10.1212/WNL.0b013e318216eb7b.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Laver K, Dyer S, Whitehead C, Clemson L, Crotty M. Interventions to delay functional decline in people with dementia: a systematic review of systematic reviews. BMJ Open. 2016;6(4):e010767.  https://doi.org/10.1136/bmjopen-2015-010767.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Van’t Leven N, Prick AE, Groenewoud JG, Roelofs PD, de Lange J, Pot AM. Dyadic interventions for community-dwelling people with dementia and their family caregivers: a systematic review. Int Psychogeriatr. 2013;25(10):1581–603.  https://doi.org/10.1017/S1041610213000860.CrossRefGoogle Scholar
  94. 94.
    Reisberg B, Ferris SH, de Leon MJ, Crook T. The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982;139(9):1136–9.  https://doi.org/10.1176/ajp.139.9.1136.CrossRefPubMedGoogle Scholar
  95. 95.
    Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4.CrossRefGoogle Scholar
  96. 96.
    Farlow MR, Salloway S, Tariot PN, Yardley J, Moline ML, Wang Q, et al. Effectiveness and tolerability of high-dose (23 mg/d) versus standard-dose (10 mg/d) donepezil in moderate to severe Alzheimer’s disease: a 24-week, randomized, double-blind study. Clin Ther. 2010;32(7):1234–51.  https://doi.org/10.1016/j.clinthera.2010.06.019.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Statistical review(s). Donepezil 23 mg tablets drug approval package. U.S. Food and Drug Administration. 2010. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022568Orig1s000StatR.pdf. Accessed 1 Dec 2016.
  98. 98.
    Medical review(s). Donepezil 23 mg tablets drug approval package. U.S. Food and Drug Administration. 2010. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022568Orig1s000MedR.pdf. Accessed 1 Dec 2016.
  99. 99.
    Cummings JL, Geldmacher D, Farlow M, Sabbagh M, Christensen D, Betz P. High-dose donepezil (23 mg/day) for the treatment of moderate and severe Alzheimer’s disease: drug profile and clinical guidelines. CNS Neurosci Ther. 2013;19(5):294–301.  https://doi.org/10.1111/cns.12076.CrossRefPubMedGoogle Scholar
  100. 100.
    Farlow M, Veloso F, Moline M, Yardley J, Brand-Schieber E, Bibbiani F, et al. Safety and tolerability of donepezil 23 mg in moderate to severe Alzheimer’s disease. BMC Neurol. 2011;11:57.  https://doi.org/10.1186/1471-2377-11-57.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Cummings J, Froelich L, Black SE, Bakchine S, Bellelli G, Molinuevo JL, et al. Randomized, double-blind, parallel-group, 48-week study for efficacy and safety of a higher-dose rivastigmine patch (15 vs. 10 cm(2)) in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2012;33(5):341–53.  https://doi.org/10.1159/000340056.CrossRefPubMedGoogle Scholar
  102. 102.
    Farlow MR, Grossberg GT, Sadowsky CH, Meng X, Somogyi M. A 24-week, randomized, controlled trial of rivastigmine patch 13.3 mg/24 h versus 4.6 mg/24 h in severe Alzheimer’s dementia. CNS Neurosci Ther. 2013;19(10):745–52.  https://doi.org/10.1111/cns.12158.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Winblad B, Jones RW, Wirth Y, Stöffler A, Möbius HJ. Memantine in moderate to severe Alzheimer’s disease: a meta-analysis of randomised clinical trials. Dement Geriatr Cogn Disord. 2007;24(1):20–7.  https://doi.org/10.1159/000102568.CrossRefPubMedGoogle Scholar
  104. 104.
    Rive B, Gauthier S, Costello S, Marre C, Francois C. Synthesis and comparison of the meta-analyses evaluating the efficacy of memantine in moderate to severe stages of Alzheimer’s disease. CNS Drugs. 2013;27(7):573–82.  https://doi.org/10.1007/s40263-013-0074-x.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Farrimond LE, Roberts E, McShane R. Memantine and cholinesterase inhibitor combination therapy for Alzheimer’s disease: a systematic review. BMJ Open. 2012;2(3):e000917.  https://doi.org/10.1136/bmjopen-2012-000917.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Matsunaga S, Kishi T, Iwata N. Combination therapy with cholinesterase inhibitors and memantine for Alzheimer’s disease: a systematic review and meta-analysis. Int J Neuropsychopharmacol. 2014.  https://doi.org/10.1093/ijnp/pyu115.
  107. 107.
    Schmidt R, Hofer E, Bouwman FH, Buerger K, Cordonnier C, Fladby T, et al. EFNS-ENS/EAN guideline on concomitant use of cholinesterase inhibitors and memantine in moderate to severe Alzheimer’s disease. Eur J Neurol. 2015;22(6):889–98.  https://doi.org/10.1111/ene.12707.CrossRefPubMedGoogle Scholar
  108. 108.
    Atri A, Hendrix SB, Pejovic V, Hofbauer RK, Edwards J, Molinuevo JL, et al. Cumulative, additive benefits of memantine-donepezil combination over component monotherapies in moderate to severe Alzheimer’s dementia: a pooled area under the curve analysis. Alzheimers Res Ther. 2015;7(1):28.  https://doi.org/10.1186/s13195-015-0109-2.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev. 2003;9(3):275–308.CrossRefGoogle Scholar
  110. 110.
    Deardorff WJ, Grossberg GT. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des Devel Ther. 2016;10:3267–79.  https://doi.org/10.2147/DDDT.S86463.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Rountree SD, Atri A, Lopez OL, Doody RS. Effectiveness of antidementia drugs in delaying Alzheimer’s disease progression. Alzheimers Dement. 2013;9(3):338–45.  https://doi.org/10.1016/j.jalz.2012.01.002.CrossRefPubMedGoogle Scholar
  112. 112.
    Rountree SD, Chan W, Pavlik VN, Darby EJ, Siddiqui S, Doody RS. Persistent treatment with cholinesterase inhibitors and/or memantine slows clinical progression of Alzheimer disease. Alzheimers Res Ther. 2009;1(2):7.  https://doi.org/10.1186/alzrt7.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Atri A, Shaughnessy LW, Locascio JJ, Growdon JH. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis Assoc Disord. 2008;22(3):209–21.  https://doi.org/10.1097/WAD.0b013e31816653bc.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Lopez OL, Becker JT, Wahed AS, Saxton J, Sweet RA, Wolk DA, et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80(6):600–7.  https://doi.org/10.1136/jnnp.2008.158964.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Parsons C. Withdrawal of antidementia drugs in older people: who, when and how? Drugs Aging. 2016;33(8):545–56.  https://doi.org/10.1007/s40266-016-0384-z.CrossRefPubMedGoogle Scholar
  116. 116.
    O'Regan J, Lanctot KL, Mazereeuw G, Herrmann N. Cholinesterase inhibitor discontinuation in patients with Alzheimer’s disease: a meta-analysis of randomized controlled trials. J Clin Psychiatry. 2015;76(11):e1424–31.  https://doi.org/10.4088/JCP.14r09237.CrossRefPubMedGoogle Scholar
  117. 117.
    Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893–903.  https://doi.org/10.1056/NEJMoa1106668.CrossRefPubMedGoogle Scholar
  118. 118.
    Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, et al. Nursing home placement in the donepezil and memantine in moderate to severe Alzheimer’s disease (DOMINO-AD) trial: secondary and post-hoc analyses. Lancet Neurol. 2015;14(12):1171–81.  https://doi.org/10.1016/S1474-4422(15)00258-6.CrossRefPubMedGoogle Scholar
  119. 119.
    Herrmann N, O’Regan J, Ruthirakuhan M, Kiss A, Eryavec G, Williams E, et al. A randomized placebo-controlled discontinuation study of cholinesterase inhibitors in institutionalized patients with moderate to severe Alzheimer disease. J Am Med Dir Assoc. 2016;17(2):142–7.  https://doi.org/10.1016/j.jamda.2015.08.019.CrossRefPubMedGoogle Scholar
  120. 120.
    O’Brien JT, Thomas A. Vascular dementia. Lancet. 2015;386(10004):1698–706.  https://doi.org/10.1016/S0140-6736(15)00463-8.CrossRefPubMedGoogle Scholar
  121. 121.
    Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol. 2007;6(9):782–92.  https://doi.org/10.1016/S1474-4422(07)70195-3.CrossRefPubMedGoogle Scholar
  122. 122.
    Erkinjuntti T, Kurz A, Gauthier S, Bullock R, Lilienfeld S, Damaraju CV. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet. 2002;359(9314):1283–90.  https://doi.org/10.1016/S0140-6736(02)08267-3.CrossRefPubMedGoogle Scholar
  123. 123.
    Moretti R, Torre P, Antonello RM, Cattaruzza T, Cazzato G, Bava A. Rivastigmine in frontotemporal dementia: an open-label study. Drugs Aging. 2004;21(14):931–7.CrossRefGoogle Scholar
  124. 124.
    Kishi T, Matsunaga S, Iwata N. Memantine for the treatment of frontotemporal dementia: a meta-analysis. Neuropsychiatr Dis Treat. 2015;11:2883–5.  https://doi.org/10.2147/NDT.S94430.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    McKeith I, Del Ser T, Spano P, Emre M, Wesnes K, Anand R, et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet. 2000;356(9247):2031–6.  https://doi.org/10.1016/S0140-6736(00)03399-7.CrossRefPubMedGoogle Scholar
  126. 126.
    Stinton C, McKeith I, Taylor JP, Lafortune L, Mioshi E, Mak E, et al. Pharmacological management of Lewy body dementia: a systematic review and meta-analysis. Am J Psychiatry. 2015;172(8):731–42.  https://doi.org/10.1176/appi.ajp.2015.14121582.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Matsunaga S, Kishi T, Iwata N. Memantine for Lewy body disorders: systematic review and meta-analysis. Am J Geriatr Psychiatry. 2015;23(4):373–83.  https://doi.org/10.1016/j.jagp.2013.11.007.CrossRefPubMedGoogle Scholar
  128. 128.
    Emre M, Aarsland D, Albanese A, Byrne EJ, Deuschl G, De Deyn PP, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med. 2004;351(24):2509–18.  https://doi.org/10.1056/NEJMoa041470.CrossRefPubMedGoogle Scholar
  129. 129.
    Emre M, Tsolaki M, Bonuccelli U, Destee A, Tolosa E, Kutzelnigg A, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(10):969–77.  https://doi.org/10.1016/S1474-4422(10)70194-0.CrossRefPubMedGoogle Scholar
  130. 130.
    Aarsland D, Ballard C, Walker Z, Bostrom F, Alves G, Kossakowski K, et al. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8(7):613–8.  https://doi.org/10.1016/S1474-4422(09)70146-2.CrossRefPubMedGoogle Scholar
  131. 131.
    Sanmarti M, Ibanez L, Huertas S, Badenes D, Dalmau D, Slevin M, et al. HIV-associated neurocognitive disorders. J Mol Psychiatry. 2014;2(1):2.  https://doi.org/10.1186/2049-9256-2-2.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Schifitto G, Navia BA, Yiannoutsos CT, Marra CM, Chang L, Ernst T, et al. Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS. 2007;21(14):1877–86.  https://doi.org/10.1097/QAD.0b013e32813384e8.CrossRefPubMedGoogle Scholar
  133. 133.
    Sacktor N, Miyahara S, Deng L, Evans S, Schifitto G, Cohen BA, et al. Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology. 2011;77(12):1135–42.  https://doi.org/10.1212/WNL.0b013e31822f0412.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Schifitto G, Zhang J, Evans SR, Sacktor N, Simpson D, Millar LL, et al. A multicenter trial of selegiline transdermal system for HIV-associated cognitive impairment. Neurology. 2007;69(13):1314–21.  https://doi.org/10.1212/01.wnl.0000268487.78753.0f.CrossRefPubMedGoogle Scholar
  135. 135.
    Sesok S, Bolle N, Kobal J, Bucik V, Vodusek DB. Cognitive function in early clinical phase huntington disease after rivastigmine treatment. Psychiatr Danub. 2014;26(3):239–48.PubMedGoogle Scholar
  136. 136.
    Cubo E, Shannon KM, Tracy D, Jaglin JA, Bernard BA, Wuu J, et al. Effect of donepezil on motor and cognitive function in Huntington disease. Neurology. 2006;67(7):1268–71.  https://doi.org/10.1212/01.wnl.0000238106.10423.00.CrossRefPubMedGoogle Scholar
  137. 137.
    Patti F. Treatment of cognitive impairment in patients with multiple sclerosis. Expert Opin Investig Drugs. 2012;21(11):1679–99.  https://doi.org/10.1517/13543784.2012.716036.CrossRefPubMedGoogle Scholar
  138. 138.
    He D, Zhang Y, Dong S, Wang D, Gao X, Zhou H. Pharmacological treatment for memory disorder in multiple sclerosis. Cochrane Database Syst Rev. 2013;12:CD008876.  https://doi.org/10.1002/14651858.CD008876.pub3.CrossRefGoogle Scholar
  139. 139.
    Rosti-Otajarvi EM, Hamalainen PI. Neuropsychological rehabilitation for multiple sclerosis. Cochrane Database Syst Rev. 2014;2:CD009131.  https://doi.org/10.1002/14651858.CD009131.pub3.CrossRefGoogle Scholar
  140. 140.
    Bortolato B, Miskowiak KW, Kohler CA, Maes M, Fernandes BS, Berk M, et al. Cognitive remission: a novel objective for the treatment of major depression? BMC Med. 2016;14:9.  https://doi.org/10.1186/s12916-016-0560-3.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Rosenblat JD, Kakar R, McIntyre RS. The cognitive effects of antidepressants in major depressive disorder: a systematic review and meta-analysis of randomized clinical trials. Int J Neuropsychopharmacol. 2015;19(2).  https://doi.org/10.1093/ijnp/pyv082.CrossRefGoogle Scholar
  142. 142.
    Holtzheimer PE 3rd, Meeks TW, Kelley ME, Mufti M, Young R, McWhorter K, et al. A double blind, placebo-controlled pilot study of galantamine augmentation of antidepressant treatment in older adults with major depression. Int J Geriatr Psychiatry. 2008;23(6):625–31.  https://doi.org/10.1002/gps.1951.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, et al. The cognitive and negative symptoms in schizophrenia trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry. 2007;164(10):1593–602.  https://doi.org/10.1176/appi.ajp.2007.06081358.CrossRefPubMedGoogle Scholar
  144. 144.
    Freudenreich O, Herz L, Deckersbach T, Evins AE, Henderson DC, Cather C, et al. Added donepezil for stable schizophrenia: a double-blind, placebo-controlled trial. Psychopharmacology. 2005;181(2):358–63.  https://doi.org/10.1007/s00213-005-2235-1.CrossRefPubMedGoogle Scholar
  145. 145.
    Buchanan RW, Conley RR, Dickinson D, Ball MP, Feldman S, Gold JM, et al. Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J Psychiatry. 2008;165(1):82–9.  https://doi.org/10.1176/appi.ajp.2007.07050724.CrossRefPubMedGoogle Scholar
  146. 146.
    Kishi T, Iwata N. NMDA receptor antagonists interventions in schizophrenia: meta-analysis of randomized, placebo-controlled trials. J Psychiatr Res. 2013;47(9):1143–9.  https://doi.org/10.1016/j.jpsychires.2013.04.013.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • William James Deardorff
    • 1
  • George T. Grossberg
    • 2
  1. 1.Department of Psychiatry and Behavioral NeuroscienceSaint Louis University School of MedicineSt. LouisUSA
  2. 2.Division of Geriatric Psychiatry, Department of Psychiatry & Behavioral NeuroscienceSt. Louis University School of MedicineSt. LouisUSA

Personalised recommendations