Skip to main content

Cluster Characters

  • Chapter
  • First Online:

Part of the book series: CRM Short Courses ((CRMSC))

Abstract

Shortly after the introduction of cluster algebras in (S. Fomin and A. Zelevinsky (2002). J. Amer. Math. Soc. 15(2), 497–529.) [19], links with an impressively vast number of fields of mathematics were uncovered. Among these is the representation theory of finite-dimensional algebras, whose links to cluster algebras became apparent in, for instance, (R. Marsh, M. Reineke and A. Zelevinsky (2003). Trans. Amer. Math. Soc. 355(10), 4171–4186.) [39], (A.B Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov (2006). Adv. Math. 204(2), 572–618.) [8], (P. Caldero and F. Chapoton (2006). Comment. Math. Helv. 81(3), 595–616.) [10].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adachi, T., Iyama, O., Reiten, I.: \(\tau \)-tilting theory. Compositio Math. 150(3), 415–452 (2014). DOI https://doi.org/10.1112/S0010437X13007422

    Article  MathSciNet  Google Scholar 

  2. Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier (Grenoble) 59(6), 2525–2590 (2009)

    Article  MathSciNet  Google Scholar 

  3. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1, London Math. Soc. Stud. Texts, vol. 65. Cambridge Univ. Press, Cambridge (2006). DOI https://doi.org/10.1017/CBO9780511614309

  4. Auslander, M., Reiten, I., Smalø, S.O.: Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., vol. 36. Cambridge Univ. Press, Cambridge (1997)

    Google Scholar 

  5. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005). DOI https://doi.org/10.1215/S0012-7094-04-12611-9

    Article  MathSciNet  Google Scholar 

  6. Buan, A.B., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi-Yau categories and unipotent groups. Compos. Math. 145(4), 1035–1079 (2009). DOI https://doi.org/10.1112/S0010437X09003960

  7. Buan, A.B., Iyama, O., Reiten, I., Smith, D.: Mutation of cluster-tilting objects and potentials. Amer. J. Math. 133(4), 835–887 (2011). DOI https://doi.org/10.1353/ajm.2011.0031

    Article  MathSciNet  Google Scholar 

  8. Buan, A.B., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006). DOI https://doi.org/10.1016/j.aim.2005.06.003

    Article  MathSciNet  Google Scholar 

  9. Buan, A.B., Marsh, R., Reiten, I.: Cluster-tilted algebras. Trans. Amer. Math. Soc. 359(1), 323–332 (2007). DOI https://doi.org/10.1090/S0002-9947-06-03879-7

    Article  MathSciNet  Google Scholar 

  10. Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81(3), 595–616 (2006). DOI https://doi.org/10.4171/CMH/65

  11. Caldero, P., Keller, B.: From triangulated categories to cluster algebras. II. Ann. Sci. École Norm. Sup. (4) 39(6), 983–1009 (2006). DOI https://doi.org/10.1016/j.ansens.2006.09.003

    Article  MathSciNet  Google Scholar 

  12. Caldero, P., Keller, B.: From triangulated categories to cluster algebras. Invent. Math. 172(1), 169–211 (2008). DOI https://doi.org/10.1007/s00222-008-0111-4

    Article  MathSciNet  Google Scholar 

  13. Cerulli Irelli, G., Keller, B., Labardini-Fragoso, D., Plamondon, P.-G.: Linear independence of cluster monomials for skew-symmetric cluster algebras. Compositio Math. 149(10), 1753–1764 (2013). DOI https://doi.org/10.1112/S0010437X1300732X

    Article  MathSciNet  Google Scholar 

  14. Dehy, R., Keller, B.: On the combinatorics of rigid objects in 2-Calabi–Yau categories. Int. Math. Res. Not. IMRN 2008(11), Art. ID rnn029, 17 pp. (2008). DOI https://doi.org/10.1093/imrn/rnn029

  15. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations. I. Mutations. Selecta Math. (N.S.) 14(1), 59–119 (2008). DOI https://doi.org/10.1007/s00029-008-0057-9

    Article  MathSciNet  Google Scholar 

  16. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations. II. Applications to cluster algebras. J. Amer. Math. Soc. 23(3), 749–790 (2010). DOI https://doi.org/10.1090/S0894-0347-10-00662-4

    Article  MathSciNet  Google Scholar 

  17. Dimca, A.: Sheaves in Topology. Universitext. Springer, Berlin (2004). DOI https://doi.org/10.1007/978-3-642-18868-8

    Chapter  Google Scholar 

  18. Dominguez, S., Geiss, C.: A Caldero–Chapoton formula for generalized cluster categories. J. Algebra 399, 887–893 (2014). DOI https://doi.org/10.1016/j.jalgebra.2013.10.018

    Article  MathSciNet  Google Scholar 

  19. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15(2), 497–529 (2002). DOI https://doi.org/10.1090/S0894-0347-01-00385-X

    Article  MathSciNet  Google Scholar 

  20. Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63–121 (2003). DOI https://doi.org/10.1007/s00222-003-0302-y

  21. Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients. Compos. Math. 143(1), 112–164 (2007). DOI https://doi.org/10.1112/S0010437X06002521

    Article  MathSciNet  Google Scholar 

  22. Fu, C., Keller, B.: On cluster algebras with coefficients and 2-Calabi–Yau categories. Trans. Amer. Math. Soc. 362(2), 859–895 (2010). DOI https://doi.org/10.1090/S0002-9947-09-04979-4

    Article  MathSciNet  Google Scholar 

  23. Geiss, C., Leclerc, B., Schröer, J.: Semicanonical bases and preprojective algebras. II. A multiplication formula. Compos. Math. 143(5), 1313–1334 (2007). DOI https://doi.org/10.1112/S0010437X07002977

    Article  MathSciNet  Google Scholar 

  24. Geiss, C., Leclerc, B., Schröer, J.: Kac–Moody groups and cluster algebras. Adv. Math. 228(1), 329–433 (2011). DOI https://doi.org/10.1016/j.aim.2011.05.011

    Article  MathSciNet  Google Scholar 

  25. Geiss, C., Leclerc, B., Schröer, J.: Generic bases for cluster algebras and the Chamber ansatz. J. Amer. Math. Soc. 25(1), 21–76 (2012). DOI https://doi.org/10.1090/S0894-0347-2011-00715-7

    Article  MathSciNet  Google Scholar 

  26. Geiss, C., Leclerc, B., Schröer, J.: Quivers with relations for symmetrizable Cartan matrices I: Foundations. Invent. Math. 209(1), 61–158 (2017). DOI https://doi.org/10.1007/s00222-016-0705-1

  27. Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62(3), 339–389 (1987). DOI https://doi.org/10.1007/BF02564452

    Article  MathSciNet  Google Scholar 

  28. Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119. Cambridge Univ. Press, Cambridge (1988). DOI https://doi.org/10.1017/CBO9780511629228

  29. Hartshorne, R.: Residues and Duality, Lecture Notes in Math., vol. 20. Springer, Berlin–New York (1966). DOI https://doi.org/10.1007/BFb0080482

  30. Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math. 172(1), 117–168 (2008). DOI https://doi.org/10.1007/s00222-007-0096-4

    Article  MathSciNet  Google Scholar 

  31. Joyce, D.: Constructible functions on Artin stacks. J. London Math. Soc. (2) 74(3), 583–606 (2006). DOI https://doi.org/10.1112/S0024610706023180

    Article  MathSciNet  Google Scholar 

  32. Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292. Springer, Berlin (1994). DOI https://doi.org/10.1007/978-3-662-02661-8

  33. Keller, B.: On triangulated orbit categories. Doc. Math. 10, 551–581 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Keller, B.: Derived categories and tilting. In: L. Angeleri Hügel, D. Happel, H. Krause (eds.) Handbook of Tilting Theory, London Math. Soc. Lecture Note Ser., vol. 332, pp. 49–104. Cambridge Univ. Press, Cambridge (2007). DOI https://doi.org/10.1017/CBO9780511735134.005

  35. Keller, B.: Calabi–Yau triangulated categories. In: A. Skowroński (ed.) Trends in Representation Theory of Algebras and Related Topics (Toruń, 2007), EMS Ser. Congr. Rep., pp. 467–489. Eur. Math. Soc., Zürich (2008). DOI https://doi.org/10.4171/062-1/11

  36. Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi–Yau. Adv. Math. 211(1), 123–151 (2007). DOI https://doi.org/10.1016/j.aim.2006.07.013

    Article  MathSciNet  Google Scholar 

  37. MacPherson, R.D.: Chern classes for singular algebraic varieties. Ann. of Math. (2) 100(2), 423–432 (1974). DOI https://doi.org/10.2307/1971080

    Article  MathSciNet  Google Scholar 

  38. Malicki, P.: Auslander–Reiten theory for finite-dimensional algebras. (2018)

    Google Scholar 

  39. Marsh, R., Reineke, M., Zelevinsky, A.: Generalized associahedra via quiver representations. Trans. Amer. Math. Soc. 355(10), 4171–4186 (2003). DOI https://doi.org/10.1090/S0002-9947-03-03320-8

    Article  MathSciNet  Google Scholar 

  40. Palu, Y.: Cluster characters for 2-Calabi–Yau triangulated categories. Ann. Inst. Fourier (Grenoble) 58(6), 2221–2248 (2008)

    Article  MathSciNet  Google Scholar 

  41. Palu, Y.: Cluster characters II: A multiplication formula. Proc. London Math. Soc. 104(1), 57–78 (2012)

    Article  MathSciNet  Google Scholar 

  42. Pierce, R.S.: Associative Algebras, Grad. Texts in Math., vol. 88. Springer, New York–Berlin (1982)

    Google Scholar 

  43. Plamondon, P.-G.: Cluster characters for cluster categories with infinite-dimensional morphism spaces. Adv. Math. 227(1), 1 – 39 (2011). DOI https://doi.org/10.1016/j.aim.2010.12.010

    Article  MathSciNet  Google Scholar 

  44. Plamondon, P.-G.: Generic bases for cluster algebras from the cluster category. Int. Math. Res. Not. IMRN 2013(10), 2368–2420 (2013). DOI https://doi.org/10.1093/imrn/rns102

    Article  MathSciNet  Google Scholar 

  45. Platzeck, M.I.: Introduction to the representation theory of finite-dimensional algebras. In this volume

    Google Scholar 

  46. Ringel, C.M.: Tame algebras and integral quadratic forms, Lecture Notes in Math., vol. 1099. Springer, Berlin (1984). DOI https://doi.org/10.1007/BFb0072870

    Google Scholar 

  47. Rupel, D.: Quantum cluster characters for valued quivers. Trans. Amer. Math. Soc. 367(10), 7061–7102 (2015). DOI https://doi.org/10.1090/S0002-9947-2015-06251-5

    Article  MathSciNet  Google Scholar 

  48. Schiffler, R.: Quiver Representations. CMS Books Math./Ouvrages Math. SMC. Springer, Cham (2014). DOI https://doi.org/10.1007/978-3-319-09204-1

    MATH  Google Scholar 

  49. Verdier, J.-L.: Catégories dérivées : Quelques résultats (État 0). In: Cohomologie étale, Lecture Notes in Math., vol. 569, pp. 262–311. Springer, Berlin–New York (1977). DOI https://doi.org/10.1007/BFb0091525

  50. Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. Astérisque 239 (1996)

    Google Scholar 

  51. Weibel, C.A.: An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., vol. 38. Cambridge Univ. Press, Cambridge (1994). DOI https://doi.org/10.1017/CBO9781139644136

Download references

Acknowledgements

The author was partially supported by the French ANR grant SC3A (ANR-15-CE40-0004-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Guy Plamondon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plamondon, PG. (2018). Cluster Characters. In: Assem, I., Trepode, S. (eds) Homological Methods, Representation Theory, and Cluster Algebras. CRM Short Courses. Springer, Cham. https://doi.org/10.1007/978-3-319-74585-5_4

Download citation

Publish with us

Policies and ethics