Skip to main content

Difference of Chirality of the Electron Between Enantiomers of H\(_2\)X\(_2\)

  • Conference paper
  • First Online:

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 31))

Abstract

The integrated chirality density of H\(_2\)X\(_2\) molecules is studied in viewpoints of the internal torque for the electron spin. Since the chirality density is proportional to the zeta potential, which is the potential of the zeta force, one of the torque for the electron spin, the distribution of the chirality density affects the distribution of the internal torque in molecules. It is seen that the integrated chirality density is larger for the larger atomic number. It is found that the integrated chirality density of H\(_2\)Te\(_2\) has the same sign as the parity-violating energy, while those of H\(_2\)O\(_2\) and H\(_2\)S\(_2\) are opposite to the sign of the parity-violating energy, and the dependence of the integrated chirality density of H\(_2\)Se\(_2\) on dihedral angle is significantly different from that of the parity-violating energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Meyerhenrich U (2008) Amino acids and the asymmetry of life. Springer, Heidelberg

    Google Scholar 

  2. Mason SF (1984) Nature 311:19

    Article  CAS  PubMed  Google Scholar 

  3. Hegstrom RA, Rein DW, Sandars PGH (1980) J Chem Phys 73:1

    Article  Google Scholar 

  4. Bast R, Koers A, Gomes ASP, Iliaš M, Visscher L, Schwerdtfeger P, Saue T (2011) Phys Chem Chem Phys 13:864

    Google Scholar 

  5. Tachibana A (2001) J Chem Phys 115:3497; J Mol Model 11:301 (2005); J Mol Struct: (THEOCHEM), 943:138 (2010). see also Tachibana A (2017) New aspects of quantum electrodynamics. Springer

    Google Scholar 

  6. Fukuda M, Senami M, Tachibana A (2013) Prog Theor Chem Phys 27:131; Fukuda M, Soga K, Senami M, Tachibana A (2016) Int J Quant Chem 116:920

    Google Scholar 

  7. Senami M, Nishikawa J, Hara T, Tachibana A (2010) J Phys Soc Jpn 79:084302; Hara T, Senami M, Tachibana A (2012) Phys Lett A 376:1434; Fukuda M, Soga K, Senami M, Tachibana A (2013) Phys Rev A 93:012518; Fukuda M, Ichikawa K, Senami M, Tachibana A (2016) AIP Adv 6:025108

    Google Scholar 

  8. Laerdahrl JK, Schwerdtfeger P (1999) Phys Rev A 60:4439

    Article  Google Scholar 

  9. Thyssen J, Laerdahrl JK, Schwerdtfeger P (2000) Phys Rev Lett 85:3105

    Article  CAS  PubMed  Google Scholar 

  10. Shee A, Visscher L, Saue T (2016) J Chem Phys 145:184107

    Article  CAS  PubMed  Google Scholar 

  11. Patrignani C et al (2016) Particle data group. Chin Phys C 40:100001

    Article  CAS  Google Scholar 

  12. Sakurai JJ (1976) Advanced quantum mechanics. (Addison-Wesley, Reading, Mass)

    Google Scholar 

  13. Tachibana A (2004) Int J Quantum Chem 100:981

    Article  CAS  Google Scholar 

  14. Ichikawa K, Nozaki H, Komazawa N, Tachibana A (2012) AIP Adv 2:042195

    Article  CAS  Google Scholar 

  15. Tachibana A (2012) Math J Chem 50(669); In: (2013) Ghosh SK, Chattaraj PK (eds) Concepts and methods in modern theoretical chemistry. CRC, Boca Raton, FL, pp 235–251

    Google Scholar 

  16. Senami M, Ichikawa K, Tachibana A, QEDynamics http://www.tachibana.kues.kyoto-u.ac.jp/qed

  17. Ichikawa K, Fukuda M, Tachibana A (2013) Int J Quantum Chem 113:190

    Google Scholar 

  18. Senami M, Miyazato T, Takada S, Ikeda Y, Tachibana A (2013) J Phys Conf Ser 454:012052; Senami M, Ogiso Y, Miyazato T, Yoshino F, Ikeda Y, Tachibana A (2013) Trans Mat Res Soc Jpn 38(4):535

    Google Scholar 

  19. Saue T, Visscher L, Jensen HJAa, Bast R, Bakken V, Dyall KG, Dubillard S, Ekström U, Eliav E, Enevoldsen T, Faßhauer E, Fleig T, Fossgaard O, Gomes ASP, Helgaker T, Lærdahl JK, Lee YS, Henriksson J, Iliaš M, Jacob ChR, Knecht S, Komorovský S, Kullie O, Larsen CV, Nataraj HS, Norman, P Olejniczak G, Olsen J, Park YC, Pedersen JK, Pernpointner M, di Remigio R, Ruud K, Sałek P, Schimmelpfennig B, Sikkema J, Thorvaldsen AJ, Thyssen J, van Stralen J, Villaume S, Visser O, Winther T, Yamamoto S (2014) DIRAC a relativistic ab initio electronic structure program. http://www.diracprogram.org

  20. Dyall KG (2012) Theor Chem Acc 99:366 (1998); Theor Chem Acc 115:441 (2006); Theor Chem Acc 117:483 (2007); J Phys Chem A 113:12638 (2009); Theor Chem Acc 131:1217

    Google Scholar 

  21. Senami M, Ikeda Y, Fukushima A, Tachibana A (2010) Jpn J Appl Phys 49:115002

    Article  CAS  Google Scholar 

  22. Dunning TH Jr (1989) J Chem Phys 90:1007; Kendall RA, Dunning TH Jr, Harrison RJ, J Chem Phys 96:6796 (1992); Woon DE, Dunning TH Jr, J Chem Phys 98:1358 (1993)

    Google Scholar 

  23. Dyall KG (2009) J Phys Chem A 113:12638; Theor Chem Acc 108:335 (2002); Chem Acc 115:441 (2006); Theor Chem Acc 117:483 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Senami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Senami, M., Inada, K., Soga, K., Fukuda, M., Tachibana, A. (2018). Difference of Chirality of the Electron Between Enantiomers of H\(_2\)X\(_2\). In: Wang, Y., Thachuk, M., Krems, R., Maruani, J. (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-74582-4_6

Download citation

Publish with us

Policies and ethics