Matrix Elements for Explicitly-Correlated Atomic Wave Functions

Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)

Abstract

We refer to atomic wave functions that contain the interelectron distances as “explicitly correlated”; we consider here situations in which an explicit correlation factor \(r_{ij}\) can occur as a power multiplying an orbital functional form (a Hylleraas function) and/or in an exponent (producing exponential correlation ). Hylleraas functions in which each wave-function term contains at most one linear \(r_{ij}\) factor define a method known as Hylleraas-CI . This paper reviews the analytical methods available for evaluating matrix elements involving exponentially-correlated and Hylleraas wave functions; attention is then focused on computation of integrals needed for the kinetic energy. In contrast to orbital-product and exponentially-correlated wave functions, no general formulas have been developed by others to relate the kinetic-energy integrals in Hylleraas-CI (or its recent extension by the Nakatsuji group) to contiguous potential-energy matrix elements. The present paper provides these missing formulas, obtaining them by using relevant properties of vector spherical harmonics. Validity of the formulas is confirmed by comparisons with kinetic-energy integrals obtained in other ways.

Notes

Acknowledgements

Completion of the numerical verifications referred to in this work involved significant consultations with Drs. María Belén Ruiz and James Sims. The author is pleased and grateful to acknowledge their assistance.

References

  1. 1.
    Hylleraas EA (1929) Z Phys 54:347CrossRefGoogle Scholar
  2. 2.
    James HM, Coolidge AS (1936) Phys Rev 49:688CrossRefGoogle Scholar
  3. 3.
    Kolos W, Roothaan CCJ (1960) Rev Mod Phys 32:205CrossRefGoogle Scholar
  4. 4.
    Larsson S (1968) Phys Rev 169:49CrossRefGoogle Scholar
  5. 5.
    Kolos W (1994) J Chem Phys 101:1330CrossRefGoogle Scholar
  6. 6.
    Sims JS, Hagstrom SA (1971) J Chem Phys 55:4699CrossRefGoogle Scholar
  7. 7.
    Woźnicki W (1971) Theory of electronic shell in atoms and molecules, Jucys A (ed), p 103. Mintis, VilniusGoogle Scholar
  8. 8.
    Pestka G, Woźnicki W (1996) Chem Phys Lett 255:281CrossRefGoogle Scholar
  9. 9.
    Sims JS, Hagstrom SA (2004) J Phys B 37:1519CrossRefGoogle Scholar
  10. 10.
    Sims JS, Hagstrom SA (2007) J Phys B 40:1575CrossRefGoogle Scholar
  11. 11.
    Sims JS, Hagstrom SA (2015) J Phys B 48:175003CrossRefGoogle Scholar
  12. 12.
    Bonham RA (1965) J Mol Spectrosc 15:112CrossRefGoogle Scholar
  13. 13.
    Bonham RA (1966) J Mol Spectrosc 20:197CrossRefGoogle Scholar
  14. 14.
    Rychlewski J, Cencek W, Komasa J (1994) Chem Phys Lett 229:657CrossRefGoogle Scholar
  15. 15.
    Fromm DM, Hill RN (1987) Phys Rev A 36:1013CrossRefGoogle Scholar
  16. 16.
    Wang C, Mei P, Kurokawa Y, Nakashima H, Nakatsuji H (2012) Phys Rev A 85:042512CrossRefGoogle Scholar
  17. 17.
    Condon EU, Shortley G (1951) The theory of atomic spectra, Cambridge University PressGoogle Scholar
  18. 18.
    Frolov AM, Smith VH (2001) J Chem Phys 115:1187CrossRefGoogle Scholar
  19. 19.
    Harris FE (1997) Phys Rev A 55:1820CrossRefGoogle Scholar
  20. 20.
    Remiddi E (1991) Phys Rev A 44:5492Google Scholar
  21. 21.
    Pachucki K, Puchalski M, Remiddi E (2004) Phys Rev A 70:032502Google Scholar
  22. 22.
    Harris FE (2009) Phys Rev A 79:032517CrossRefGoogle Scholar
  23. 23.
    Arfken GB, Weber HJ, Harris FE (2013) Math Methods Phys, 7th edn. Academic Press, New York, pp 799–800Google Scholar
  24. 24.
    Jen CK (1933) Phys Rev 43:540CrossRefGoogle Scholar
  25. 25.
    Ruiz MB (2009) J Math Chem 46:24CrossRefGoogle Scholar
  26. 26.
    Ruiz MB (2009) J Math Chem 46:1322CrossRefGoogle Scholar
  27. 27.
    Ruiz MB (2011) J Math Chem 49:2457CrossRefGoogle Scholar
  28. 28.
    Ruiz MB (2016) J Math Chem 54:1083CrossRefGoogle Scholar
  29. 29.
    Szasz L (1962) Phys Rev 126:169CrossRefGoogle Scholar
  30. 30.
    Levin D (1973) Int J Comput Math B 3:371CrossRefGoogle Scholar
  31. 31.
    Frost AA (1962) Theor Chim Acta (Berl) 1:36–41CrossRefGoogle Scholar
  32. 32.
    Harris FE (2004) Fundamental world of quantum chemistry: a tribute volume to the memory of Per-Olov Löwdin: Brändas EJ, Kryachko ES (eds), vol 3. Kluwer, Dordrecht, pp 115–128Google Scholar
  33. 33.
    Harris FE (2004) In Advances in Quant Chem: Sabin JR, Brändas EJ (eds), vol 47. Academic Press, New York, pp 129–155Google Scholar
  34. 34.
    Harris FE (2005) In Advances in Quant Chem: Sabin JR, Brändas EJ (eds), vol 50. Academic Press, New York, pp 61–75Google Scholar
  35. 35.
    Rebane TK (1993) Opt Spektrosk 75:945, 557Google Scholar
  36. 36.
    Harris FE, Frolov AM, Smith VH (2003) J Chem Phys 119:8833CrossRefGoogle Scholar
  37. 37.
    Harris FE (2016) J Chem Phys 144:204110; Erratum (2016) 145:129901Google Scholar
  38. 38.
    Morse PM, Feshbach H (1953) Methods of theoretical physics. Part II. McGraw-Hill, New York, pp 1898–1901Google Scholar
  39. 39.
    Edmonds AR (1957) Ang Moment Quant Mech. Princeton University Press, Princeton, NJCrossRefGoogle Scholar
  40. 40.
    Pinchon D, Hoggan PE (2007) Int J Quant Chem 107:2186CrossRefGoogle Scholar
  41. 41.
    Kolos W, Roothaan CCJ (1960) Rev Mod Phys 32:219CrossRefGoogle Scholar
  42. 42.
    Harris FE (to be published)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of UtahSalt Lake CityUSA
  2. 2.Quantum Theory ProjectUniversity of FloridaGainesvilleUSA

Personalised recommendations