# Functional Derivatives and Differentiability in Density-Functional Theory

## Abstract

Based on Lindgren and Salomonson’s analysis on Fréchet differentiability [Phys Rev A 67:056501 (2003)], we showed a specific variational path along which the Fréchet derivative of the Levy-Lieb functional does not exist in the unnormalized density domain. This conclusion still holds even when the density is restricted within a normalized space. Furthermore, we extended our analysis to the Lieb functional and demonstrated that the Lieb functional is not Fréchet differentiable. Along our proposed variational path, the Gâteaux derivative of the Levy-Lieb functional or the Lieb functional takes a different form from the corresponding one along other more conventional variational paths. This fact prompted us to define a new class of *unconventional* density variations and inspired us to present a modified density variation domain to eliminate the problems associated with such unconventional density variations.

## Keywords

Density functional Density variation Functional differentiability Functional derivative## Notes

### Acknowledgements

Financial support for this project was provided by a grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

## References

- 1.Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
- 2.Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
- 3.Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
- 4.Wang YA, Xiang P (2013) In: Wesolowski TA, Wang YA (eds) Recent advances in orbital-free density functional theory, Chap. 1. World Scientific, Singapore, pp 3–12Google Scholar
- 5.Lieb EH (1983) Int J Quantum Chem 24:243CrossRefGoogle Scholar
- 6.Englisch H, Englisch R (1983) Phys Stat Sol 123:711CrossRefGoogle Scholar
- 7.Englisch H, Englisch R (1984) Phys Stat Sol 124:373CrossRefGoogle Scholar
- 8.Lindgren I, Salomonson S (2003) Phys Rev A 67:056501CrossRefGoogle Scholar
- 9.Lindgren I, Salomonson S (2003) Adv Quantum Chem 43:95CrossRefGoogle Scholar
- 10.Lindgren I, Salomonson S (2004) Phys Rev A 70:032509CrossRefGoogle Scholar
- 11.Ekeland I, Temam R (1976) Convex analysis and variational problems. North-Holland, AmsterdamGoogle Scholar
- 12.Harris J, Jones RO (1974) J Phys F 4:1170CrossRefGoogle Scholar
- 13.Harris J (1984) Phys Rev A 29:1648CrossRefGoogle Scholar
- 14.Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274CrossRefGoogle Scholar
- 15.Langreth DC, Perdew JP (1980) Phys Rev B 21:5469CrossRefGoogle Scholar
- 16.Wang YA (1997) Phys Rev A 55:4589CrossRefGoogle Scholar
- 17.Wang YA (1997) Phys Rev A 56:1646CrossRefGoogle Scholar
- 18.Levy M (1979) Proc Natl Acad Sci USA 76:6062CrossRefGoogle Scholar
- 19.Nesbet RK (2001) Phys Rev A 65:010502CrossRefGoogle Scholar
- 20.Nesbet RK (2003) Adv Quantum Chem 43:1CrossRefGoogle Scholar
- 21.Dreizler RM, Gross EKU (1990) Density functional theory. Springer, BerlinCrossRefGoogle Scholar
- 22.Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic, New YorkGoogle Scholar
- 23.Perdew JP, Levy M (1985) Phys Rev B 31:6264CrossRefGoogle Scholar
- 24.Englisch H, Englisch R (1983) Physica A 121:253CrossRefGoogle Scholar
- 25.Zhang YA, Wang YA (2009) Int J Quantum Chem 109:3199CrossRefGoogle Scholar
- 26.Milne RD (1980) Applied functional analysis: an introductory treatment. Pitman Publishing, UKGoogle Scholar