Spectroscopy of Radiative Decay Processes in Heavy Rydberg Alkali Atomic Systems

  • Valentin B. Ternovsky
  • Alexander V. Glushkov
  • Olga Yu. Khetselius
  • Marina Yu. Gurskaya
  • Anna A. Kuznetsova
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)

Abstract

We present the results of studying the radiation decay processes and computing the probabilities and oscillator strengths of radiative transitions in spectra of heavy Rydberg alkali-metal atoms. All calculations of the radiative decay (transitions) probabilities have been carried out within the generalized relativistic energy approach (which is based on the Gell-Mann and Low S-matrix formalism) and the relativistic many-body perturbation theory with using the optimized one-quasiparticle representation and an accurate accounting for the critically important exchange-correlation effects as the perturbation theory second and higher orders ones. The precise data on spectroscopic parameters (energies, reduced dipole transition matrix elements, amplitude transitions) of the radiative transitions nS1/2→n′P1/2,3/2 (n = 5, 6; n′ = 10–70), nP1/2,3.2→n′D3/2,5/2 (n = 5, 6; n′ = 10–80) in the Rydberg Rb, Cs spectra and the transitions 7S1/2-nP1/2,3/2, 7P1/2,3.2-nD3/2,5/2 (n = 20–80) in the Rydberg francium spectrum are presented. The obtained results are analyzed and discussed from viewpoint of the correct accounting for the relativistic and exchange-correlation effects. It has been shown that theoretical approach used provides an effective accounting of the multielectron exchange-correlation effects, including effect of essentially non-Coulomb grouping of Rydberg levels and others.

Keywords

Radiation decay processes Multielectron atoms and multicharged ions Relativistic energy approach 

Notes

Acknowledgements

The authors are very much thankful to Prof. J. Maruani and Dr. Y. A. Wang for invitation to make contributions on the QSCP-XVI workshop (Vancouver, Canada). The useful comments of the anonymous referees are very much acknowledged too.

References

  1. 1.
    Martin W (2004) NIST spectra database, version 2.0. NIST, Washington. http://physics.nist.gov.asd
  2. 2.
    Moore C (1987) NBS spectra database. NBS, WashingtonGoogle Scholar
  3. 3.
    Weiss A (1977) J Quant Spectrosc Radiat Transf 18:481; Phys Scripta T65:188 (1993)Google Scholar
  4. 4.
    Nadeem A, Haq SU (2010) Phys Rev A 81:063432; (2011) Phys Rev A 83:063404Google Scholar
  5. 5.
    Simsarian JE, Orozco LA, Sprouse GD, Zhao WZ (1998) Phys Rev A 57:2448CrossRefGoogle Scholar
  6. 6.
    Curtis L (1995) Phys Rev A 51:4574Google Scholar
  7. 7.
    Li Y, Pretzler G, Fill EE (1995) Phys Rev A 52:R3433–R3435CrossRefGoogle Scholar
  8. 8.
    Feng Z-G, Zhang L-J, Zhao J-M, Liand C-Y, Jia S-T (2009) J Phys B At Mol Opt Phys 42:145303CrossRefGoogle Scholar
  9. 9.
    Marinescu M, Vrinceanu D, Sadeghpour HR (1998) Phys Rev A 58:R4259CrossRefGoogle Scholar
  10. 10.
    Safronova UI, Johnson W, Derevianko A (1999) Phys Rev A 60:4476; Dzuba V, Flambaum V, Safranova MS (2006) Phys Rev A 73:02211Google Scholar
  11. 11.
    Grant IP (2007) Relativistic quantum theory of atoms and molecules, theory and computation. In: Springer series on atomic, optical, and plasma physics, vol 40. Springer, Berlin, pp 587–626Google Scholar
  12. 12.
    Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems. Astroprint, Odessa, p 700Google Scholar
  13. 13.
    Wilson S (2007) Recent advances in theoretical physics and chemistry systems. In: Maruani J, Lahmar S, Wilson S, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 16. Springer, Berlin, pp 11–80Google Scholar
  14. 14.
    Feller D, Davidson ER (1981) J Chem Phys 74:3977CrossRefGoogle Scholar
  15. 15.
    Froelich P, Davidson ER, Brändas E (1983) Phys Rev A 28:2641CrossRefGoogle Scholar
  16. 16.
    Rittby M, Elander N, Brändas E (1983) Int J Quantum Chem 23:865CrossRefGoogle Scholar
  17. 17.
    Wang YA, Yam CY, Chen YK, Chen GH (2011) J Chem Phys 134:241103Google Scholar
  18. 18.
    Maruani J (2016) J Chin Chem Soc 63:33CrossRefGoogle Scholar
  19. 19.
    Pavlov R, Mihailov L, Velchev C, Dimitrova-Ivanovich M,  Stoyanov Z, Chamel N, Maruani J (2010) J Phys Conf Ser 253:012075Google Scholar
  20. 20.
    Dietz K, Heβ BA (1989) Phys Scripta 39:682CrossRefGoogle Scholar
  21. 21.
    Kohn JW, Sham LJ (1964) Phys Rev A 140:1133CrossRefGoogle Scholar
  22. 22.
    Gross EG, Kohn W (2005) Exchange-correlation functionals in density functional theory. Plenum, New YorkGoogle Scholar
  23. 23.
    Froese Fischer C, Tachiev G, Irimia A (2006) GAtom Data Nucl Data Tables 92:607CrossRefGoogle Scholar
  24. 24.
    Cheng K, Kim Y, Desclaux J (1979) At Data Nucl Data Tables 24:11CrossRefGoogle Scholar
  25. 25.
    Safranova UI, Safranova MS, Johnson W (2005) Phys Rev A 71:052506CrossRefGoogle Scholar
  26. 26.
    Ternovsky EV, Antoshkina OA, Florko TA, Tkach TB (2017) Photoelectronics 26:139Google Scholar
  27. 27.
    Indelicato P, Desclaux JP (1993) Phys Scripta T 46:110CrossRefGoogle Scholar
  28. 28.
    Dzuba VA, Flambaum VV, Sushkov OP (1995) Phys Rev A 51:3454CrossRefGoogle Scholar
  29. 29.
    Sapirstein J (1998) Rev Modern Phys 70:55CrossRefGoogle Scholar
  30. 30.
    Piotrowicz M, MacCormick C, Kowalczyk A et al (2011) arXiv:1103.0109v2 [quant-ph]; Beterov I, Mansell CW, Yakshina EA et al (2012) arXiv:1207.3626v1 [physics.atom-ph]
  31. 31.
    Dyachkov LG, Pankratov PM (1994) J Phys B 27(3):461; Piotrowicz M, MacCormick C, Kowalczyk A, Bergamini S, Yakshina EA (2011) New Journ Phys 13:093012Google Scholar
  32. 32.
    Quinet P, Argante C, Fivet V, Terranova1 C, Yushchenko AV, Biémont É (2007) Astrophys Astron 474:307Google Scholar
  33. 33.
    Biémont É, Fivet V, Quinet P (2004) J Phys B At Mol Opt Phys 37:4193CrossRefGoogle Scholar
  34. 34.
    Glushkov AV (1991) Opt Spectrosc 70:555Google Scholar
  35. 35.
    Glushkov AV (1990) Soviet Phys J 33(1):1CrossRefGoogle Scholar
  36. 36.
    Khetselius OY (2009) Int J Quantum Chem 109:3330CrossRefGoogle Scholar
  37. 37.
    Khetselius OY (2009) Phys Scripta T135:014023CrossRefGoogle Scholar
  38. 38.
    Malinovskaya SV, Glushkov AV, Khetselius OY, Svinarenko AA, Mischenko EV, Florko TA (2009) Int J Quant Chem 109(4):3325CrossRefGoogle Scholar
  39. 39.
    Glushkov AV, Loboda AV, Gurnitskaya EP, Svinarenko AA (2009) Phys Scripta T135:014022CrossRefGoogle Scholar
  40. 40.
    Glushkov AV, Khetselius OY, Svinarenko AA (2013) Phys Scripta T153:014029CrossRefGoogle Scholar
  41. 41.
    Svinarenko AA (2014) J Phys Conf Ser 548:012039CrossRefGoogle Scholar
  42. 42.
    Glushkov AV, Mansarliysky VF, Khetselius OY, Ignatenko AV, Smirnov A, Prepelitsa GP (2017) J Phys Conf Ser 810:012034CrossRefGoogle Scholar
  43. 43.
    Glushkov AV, Loboda AV (2007) J Appl Spectrosc 74:305. (Springer)CrossRefGoogle Scholar
  44. 44.
    Malinovskaya SV, Glushkov AV, Khetselius OY, Loboda AV, Lopatkin YuM, Svinarenko AA, Nikola LV, Perelygina TB (2011) Int J Quantum Chem 111:288CrossRefGoogle Scholar
  45. 45.
    Glushkov AV, Khetselius OY, Loboda AV, Ignatenko AV, Svinarenko AA, Korchevsky DA, Lovett L (2008) Spectral line shapes. AIP Conf Proc 1058:175Google Scholar
  46. 46.
    Khetselius OY (2012) J Phys Conf Ser 397:012012CrossRefGoogle Scholar
  47. 47.
    Khetselius OY, Florko TA, Svinarenko AA, Tkach TB (2013) Phys Scripta T153:014037CrossRefGoogle Scholar
  48. 48.
    Khetselius OY (2008) Spectral line shapes. AIP Conf Proc 1058:363CrossRefGoogle Scholar
  49. 49.
    Khetselius OY, Glushkov AV, Gurnitskaya EP, Loboda AV, Mischenko EV, Florko T, Sukharev D (2008) Spectral line shapes. AIP Conf Proc 1058:231Google Scholar
  50. 50.
    Khetselius OY (2007) Photoelectronics 16:129Google Scholar
  51. 51.
    Khetselius OY, Gurnitskaya EP (2006) Sens Electron Microsyst Technol N 3:35Google Scholar
  52. 52.
    Khetselius OY, Gurnitskaya EP (2006) Sens Electron Microsyst Technol N 2:25Google Scholar
  53. 53.
    Johnson WR, Lin CD, Cheng KT (1980) Phys Scr 21:409CrossRefGoogle Scholar
  54. 54.
    Johnson WR, Sapistein J, Blundell S (1988) Phys Rev A 37:307CrossRefGoogle Scholar
  55. 55.
    Khetselius OY (2011) Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint, OdessaGoogle Scholar
  56. 56.
    Hibbert A, Hansen JE (1994) J Phys B At Mol Opt Phys 27:3325Google Scholar
  57. 57.
    Braun MA, Dmitriev YuYu, Labzovsky LN (1969) JETP 57:2189Google Scholar
  58. 58.
    Tolmachev VV (1969) Adv Quantum Chem 4:331Google Scholar
  59. 59.
    Ivanov LN, Ivanova EP (1979) At Data Nucl Data Tables 24:95CrossRefGoogle Scholar
  60. 60.
    Driker MN, Ivanova EP, Ivanov LN, Shestakov AF (1982) J Quant Spectrosc Radiat Transf 28:531CrossRefGoogle Scholar
  61. 61.
    Ivanov LN, Letokhov VS (1985) Com Mod Phys D At Mol Phys 4:169Google Scholar
  62. 62.
    Vidolova-Angelova E, Ivanov LN, Ivanova EP, Angelov DA (1986) J Phys B At Mol Opt Phys 19:2053CrossRefGoogle Scholar
  63. 63.
    Glushkov AV (2006) Relativistic and correlation effects spectra of atomic systems. Astroprint, OdessaGoogle Scholar
  64. 64.
    Ivanov LN, Ivanova EP, Aglitsky EV (1988) Phys Rep 166:315Google Scholar
  65. 65.
    Ivanova EP, Ivanov LN, Glushkov AV, Kramida AE (1985) Phys Scripta 32:513CrossRefGoogle Scholar
  66. 66.
    Ivanova EP, Glushkov AV (1986) J Quant Spectrosc Radiat Transf 36:127CrossRefGoogle Scholar
  67. 67.
    Ivanov LN, Ivanova EP, Knight L (1993) Phys Rev A 48:4365CrossRefGoogle Scholar
  68. 68.
    Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33CrossRefGoogle Scholar
  69. 69.
    Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow, pp 58–160Google Scholar
  70. 70.
    Glushkov AV (2012) Quantum systems in chemistry and physics: progress in methods and applications. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 26. Springer, pp 231–252Google Scholar
  71. 71.
    Glushkov AV, Ivanov LN (1993) J Phys B At Mol Opt Phys 26:L379CrossRefGoogle Scholar
  72. 72.
    Glushkov AV (1992) JETP Lett 55:97Google Scholar
  73. 73.
    Khestelius OYu (2008) Hyperfine structure of atomic spectra. Astroprint, Odessa, 210pGoogle Scholar
  74. 74.
    Svinarenko AA, Glushkov AV, Khetselius OY, Ternovsky VB, Dubrovskaya YV, Kuznetsova AA, Buyadzhi VV (2017) In: Orjuela JEA (ed) Rare earth element. InTech, pp 83–104Google Scholar
  75. 75.
    Glushkov AV, Khetselius OY, Svinarenko AA, Buyadzhi VV, Ternovsky VB, Kuznetsova, Bashkarev PG (2017) In: Uzunov DI (ed) Recent studies in perturbation theory. InTech, pp 131–150Google Scholar
  76. 76.
    Glushkov AV, Ambrosov SV, Loboda AV, Chernyakova Yu G, Svinarenko AA, Khetselius OY (2004) Nucl Phys A Nucl Hadr Phys 734:21Google Scholar
  77. 77.
    Glushkov AV, Malinovskaya SV, Sukharev DE, Khetselius OY, Loboda AV, Lovett L (2009) Int J Quantum Chem 109:1717CrossRefGoogle Scholar
  78. 78.
    Glushkov AV (2013) Advances in quantum methods and applications in chemistry, physics, and biology. In: Hotokka M, Maruani J, Brändas E, Delgado-Barrio G (ed) Series: Progress in theoretical chemistry and physics, vol 27B. Springer, pp 161–178Google Scholar
  79. 79.
    Glushkov AV, Khetselius OY, Svinarenko AA, Prepelitsa GP (2010) In: Duarte FJ (ed) Coherence and ultrashort pulsed emission. InTech, Rijeka, pp 159–186Google Scholar
  80. 80.
    Buyadzhi VV, Glushkov AV, Lovett L (2014) Photoelectronics 23:38Google Scholar
  81. 81.
    Buyadzhi VV, Glushkov AV, Mansarliysky VF, Ignatenko AV, Svinarenko AA (2015) Sens Electron Microsyst Technol 12(4):27CrossRefGoogle Scholar
  82. 82.
    Glushkov AV, Khetselius OY, Malinovskaya SV (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 18. Springer, pp 525–541Google Scholar
  83. 83.
    Glushkov AV, Khetselius OY, Malinovskaya SV (2008) Eur Phys J Spec Top 160:195CrossRefGoogle Scholar
  84. 84.
    Glushkov AV, Khetselius OY, Malinovskaya SV (2008) Mol Phys 106:1257CrossRefGoogle Scholar
  85. 85.
    Glushkov AV, Khetselius OY, Svinarenko AA (2012) Advances in the theory of quantum systems in chemistry and physics. In: Hoggan P, Maruani J, Brandas E, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 22. Springer, pp 51–68Google Scholar
  86. 86.
    Glushkov AV, Khetselius OY, Lovett L (2010) Advances in the theory of atomic and molecular systems dynamics, spectroscopy, clusters, and nanostructures. In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Series: Progress in theoretical chemistry and physics, vol 20. Springer, pp 125–152Google Scholar
  87. 87.
    Glushkov AV, Khetselius OY, Loboda AV, Svinarenko AA (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 18. Springer, pp 543–560Google Scholar
  88. 88.
    Glushkov AV, Khetselius O, Gurnitskaya E, Loboda A, Florko T, Sukharev D, Lovett L (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout P, Maruani J, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 18. Springer, pp 507–524Google Scholar
  89. 89.
    Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Khetselius OY (2006) Recent advances in theoretical physics and chemistry systems. In: Julien JP, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 15. Springer, pp 285–299Google Scholar
  90. 90.
    Malinovskaya SV, Glushkov AV, Dubrovskaya YV, Vitavetskaya LA (2006) Recent advances in theoretical physics and chemistry systems. In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 15. Springer, pp 301–307Google Scholar
  91. 91.
    Khetselius OY (2012) Quantum systems in chemistry and physics: progress in methods and applications. In: Nishikawa K, Maruani J, Brandas E, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 26. Springer, pp 217–229Google Scholar
  92. 92.
    Khetselius OY (2015) Frontiers in quantum methods and applications in chemistry and physics. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 29. Springer, pp 55–76Google Scholar
  93. 93.
    Glushkov AV, Svinarenko AA, Khetselius OY, Buyadzhi VV, Florko TA, Shakhman AN (2015) Frontiers in quantum methods and applications in chemistry and physics. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 29. Springer, pp 197–217Google Scholar
  94. 94.
    Khetselius OY, Zaichko PA, Smirnov AV, Buyadzhi VV, Ternovsky VB, Florko TA, Mansarliysky VF (2017) Quantum systems in physics, chemistry, and biology. In: Tadjer A, Pavlov R, Maruani J, Brändas E, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 30. Springer, pp 271–281Google Scholar
  95. 95.
    Glushkov AV, Rusov VD, Ambrosov SV, Loboda AV (2003) New projects and new lines of research in nuclear physics. In: Fazio G, Hanappe F (eds). World Scientific, Singapore, pp 126–132Google Scholar
  96. 96.
    Glushkov AV, Malinovskaya SV, Loboda AV, Shpinareva IM, Prepelitsa GP (2006) J Phys Conf Ser 35:420CrossRefGoogle Scholar
  97. 97.
    Glushkov AV, Malinovskaya SV, Chernyakova YG, Svinarenko AA (2004) Int J Quantum Chem 99:889CrossRefGoogle Scholar
  98. 98.
    Glushkov AV, Ambrosov SV, Ignatenko AV, Korchevsky DA (2004) Int J Quantum Chem 99:936Google Scholar
  99. 99.
    Glushkov AV, Ignatenko AV, Khetselius OY, Ternovsky VB (2017) Spectroscopy of Rydberg atoms and relativistic quantum chaos, OSENU, Odessa, p 152Google Scholar
  100. 100.
    Ternovsky VB, Buyadzhi VV, Gurskaya MY, Kuznetsova AA (2015) Preprint OSENU, NAM-3 (Odessa, 2015), p 32; Preprint OSENU, OSENU, NAM-4 (Odessa, 2015), p 36Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Valentin B. Ternovsky
    • 1
  • Alexander V. Glushkov
    • 1
  • Olga Yu. Khetselius
    • 1
  • Marina Yu. Gurskaya
    • 1
  • Anna A. Kuznetsova
    • 1
  1. 1.Odessa State Environmental UniversityOdessa-9Ukraine

Personalised recommendations