Skip to main content

A Framework to Improve the Coexistence of Maritime Activities & Offshore Wind Farms

  • Chapter
  • First Online:

Part of the book series: WMU Studies in Maritime Affairs ((WMUSTUD,volume 6))

Abstract

The increasing number and size of offshore wind farms (OWFs), combined with the ambitious plans for future developments in the sector, portray a bleak outlook for ‘traditional’ maritime and marine players. The sustained growth of OWFs can cause conflict with other marine users, and thus certain risk control options (RCOs) may need to be adapted in order to maintain navigational safety and reduce the environmental impact of such installations; introducing such measures, however, may be counter-productive in terms of energy efficiency or financial sustainability. This leads to questions such as ‘is there a point when implementing certain RCOs actually makes an OWF project unfeasible’?

In this discussion paper, we describe a holistic and integrated framework that allows decision makers to evaluate the safety, energy efficiency, environmental impacts and financial sustainability aspects of OWFs. We consider a selection of vital factors and parameters in the current framework, and discuss how the different data sets can be integrated into a single framework. We also describe a novel evaluation tool that can allow users to ‘plot’ the output of the proposed framework in a spider diagram form. We conclude by discussing how the proposed work can be employed to optimize the use of limited sea-space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson, M. H. (2011) Offshore wind farms – Ecological effects of noise and habitat alteration on fish. Dissertation, Stockholm University

    Google Scholar 

  • Bailey, H., Brookes, K. L., & Thompson, P. M. (2014). Assessing environmental impacts of offshore wind farms: Lessons learned and recommendations for the future. Aquatic Biosystems. https://doi.org/10.1186/2046-9063-10-8.

    Article  Google Scholar 

  • Beiersdorf, A., & Radecke, A. (Eds.). (2014). Ecological research at the offshore Windfarm alpha ventus: Challenges, results and perspectives. Wiesbaden: Springer.

    Google Scholar 

  • Blanco, M. I. (2009). The economics of wind energy. Renewable and Sustainable Energy Reviews, 13, 1372–1382.

    Article  Google Scholar 

  • Boquist, P. (2015). Offshore wind power investment model using a reference class forecasting approach to estimate the required cost contingency budget. Dissertation, Uppsala University.

    Google Scholar 

  • Boukani, L. N. (2016). Ship energy management and development of software for vessels’ optimum economic speed. Dissertation, World Maritime University.

    Google Scholar 

  • BSH. (2015). Minimum requirements concerning the constructive design of offshore structures within the Exclusive Economic Zone (EEZ). In BSH Books. Available via BSH. http://www.bsh.de/de/Produkte/Buecher/Standard/index.jsp. Accessed 18 August 2017.

  • Chen, J.-L., Liu, H.-H., Chuang, C.-T., & Lu, H.-J. (2015). The factors affecting stakeholders’ acceptance of offshore wind farms along the western coast of Taiwan: Evidence from stakeholders’ perceptions. Ocean Coast Manage, 109, 40–50.

    Article  Google Scholar 

  • Chircop, A., & L’Esperance, P. (2016). Functional interactions and maritime regulation: The mutual accommodation of offshore wind farms and international navigation and shipping. Ocean Yearbook, 30, 439–487.

    Google Scholar 

  • Dalgic, Y., Lazakis, I., Dinwoodie, I., McMillan, D., & Revie, M. (2015). Advanced logistics planning for offshore wind farm operation and maintenance activities. Ocean Engineering, 101, 211–226.

    Article  Google Scholar 

  • Deeb, H., Mehdi, R. A., & Hahn, A. (2017). A review of damage assessment models in the maritime domain. Ships Offshore Structures, 12(1), 31–54.

    Article  Google Scholar 

  • Degraer, S., & Brabant, R. (Eds.). (2009). Offshore wind farms in the Belgian part of the North Sea: State of the art after two years of environmental monitoring. Brussels: Royal Belgian Institute for Natural Sciences.

    Google Scholar 

  • Desholm, M., & Kahlert, J. (2005). Avian collision risk at an offshore wind farm. Biology Letters, 1(3), 296–298.

    Article  Google Scholar 

  • Devine-Wright, P. (2005). Beyond NIMBYism: Towards an integrated framework for understanding public perceptions of wind energy. Wind Energy, 8, 125–139.

    Article  Google Scholar 

  • Dierschke, V., Garthe, S., & Mendel, B. (2006). Possible conflicts between offshore wind farms and seabirds in the German sectors of North Sea and Baltic Sea. In J. Köller, J. Köppel, & W. Peters (Eds.), Offshore wind energy: Research on environmental impacts (pp. 121–143). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Ehlers, C., & Douvere, F. (2009). Marine Spatial Planning: a step-by-step approach toward ecosystem-based management. Intergovernmental Oceanographic Commission and Man and the Biosphere Programme (IOC Manual and Guides No. 53, ICAM Dossier No. 6). UNESCO Publications. Available via UNESCO. http://unesdoc.unesco.org/images/0018/001865/186559e.pdf. Accessed 17 May 2017.

  • EU. (2014). DIRECTIVE 2014/89/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 July 2014 establishing a framework for maritime spatial planning. Official Journal of the European Union. Available via EU. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014L0089&from=EN. Accessed 17 May 2017.

  • EU. (2016). Political declaration on energy cooperation between the North Seas Countries. European Union Documents. Available via EU. http://europa.eu/rapid/attachment/IP-16-2029/en/Political%20Declaration%20on%20Energy%20Cooperation%20between%20the%20North%20Seas%20Countries%20FINAL.pdf. Accessed 17 May 2017.

  • EWEA. (2016). The European offshore wind industry - key trends and statistics 2015. https://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-European-Offshore-Statistics-2015.pdf. Accessed 1 March 2017.

  • Giebel, G., & Hasager, C. B. (2016). An overview of offshore wind farm design. In W. Ostachowicz, M. McGugan, J.-U. Schröder-Hinrichs, & M. Luczak (Eds.), MARE-WINT: New materials and reliability in offshore wind turbine technology (pp. 337–346). Cham: Springer.

    Chapter  Google Scholar 

  • Gjødvad, J. F., & Ibsen, M. D. (2016). ODIN-WIND: An overview of the decommissioning process for offshore wind turbines. In W. Ostachowicz, M. McGugan, J.-U. Schröder-Hinrichs, & M. Luczak (Eds.), MARE-WINT: New materials and reliability in off-shore wind turbine technology (pp. 403–419). Cham: Springer.

    Chapter  Google Scholar 

  • GWEC. (2016). Global Wind Report 2015 – Annual market update. http://www.gwec.net/publications/global-wind-report-2/global-wind-report-2015-annual-market-update/. Accessed 1 March 2017.

  • Hüppop, O., Dierschke, J., Exo, K.-M., Fredrich, E., & Hill, R. (2006). Bird migration and off-shore wind turbines. In J. Köller, J. Köppel, & W. Peters (Eds.), Offshore wind energy: Research on environmental impacts (pp. 91–116). Heidelberg: Springer.

    Chapter  Google Scholar 

  • IMO. (2015a). Routeing measures and mandatory ship reporting systems. Report on the Formal Safety Assessment (FSA) related to proposals for new and amended routeing measures off the Netherlands- Belgian Coast between West Hinder, North Hinder and Maas West traffic separation schemes Submitted by Belgium and the Netherlands. NSCR 3/INF.3 In: IMO Docs. Available via IMO. https://docs.imo.org/. Accessed 18 August 2017.

  • IMO. (2015b). Routeing measures and mandatory ship reporting systems. New traffic separation scheme and amendments to existing traffic separation schemes “In the Approaches to Hook of Holland and at North Hinder” Submitted by Belgium and the Netherlands. NSCR 3/3/2 In: IMO Docs. Available via IMO. https://docs.imo.org/. Accessed 18 August 2017.

  • IMO. (2017). Formal Safety Assessment. http://www.imo.org/en/OurWork/Safety/SafetyTopics/Pages/FormalSafetyAssessment.aspx. Accessed 10 June 2017.

  • Köller, J., Köppel, J., & Peters, W. (Eds.). (2006). Offshore wind energy: Research on environmental impacts. Heidelberg: Springer.

    Google Scholar 

  • Lacroix, D., & Pioch, S. (2011). The multi-use in wind farm projects: More conflicts or a win-win opportunity? Aquatic Living Resources, 24, 129–135.

    Article  Google Scholar 

  • Ladenburg, J. (2011). Attitude and acceptance of offshore wind farms – The influence of travel time and wind farm attributes. Renewable and Sustainable Energy Reviews, 15, 4223–4235.

    Article  Google Scholar 

  • Maegaard, P., Krenz, A., & Palz, W. (Eds.). (2013a). Wind power for the world: The rise of modern wind energy: Pan Stanford series on renewable energy (Vol. 2). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Maegaard, P., Krenz, A., & Palz, W. (Eds.). (2013b). Wind power for the world: International reviews and developments: Pan Stanford series on renewable energy (Vol. 3). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Martínez García, I. E., Sánchez Sánchez, A., & Barbati, S. (2016). Reliability and preventive maintenance. In W. Ostachowicz, M. McGugan, J.-U. Schröder-Hinrichs, & M. Luczak (Eds.), MARE-WINT: New materials and reliability in offshore wind turbine technology (pp. 235–272). Cham: Springer.

    Chapter  Google Scholar 

  • Mehdi, R. A., Ostachowicz, W., & Luczak, M. (2016). Introduction. In W. Ostachowicz, M. McGugan, J.-U. Schröder-Hinrichs, & M. Luczak (Eds.), MARE-WINT: New materials and reliability in offshore wind turbine technology (pp. 1–9). Cham: Springer.

    Google Scholar 

  • Mehdi, R. A., & Schröder-Hinrichs, J.-U. (2016). A theoretical risk management frame-work for vessels operating near offshore wind farms. In W. Ostachowicz, M. McGugan, J.-U. Schröder-Hinrichs, & M. Luczak (Eds.), MARE-WINT: New materials and reliability in offshore wind turbine technology (pp. 359–400). Cham: Springer.

    Chapter  Google Scholar 

  • Mehdi, R. A., Schröder-Hinrichs, J.-U., van Overloop, J., Nilsson, H., & Pålsson, J. (2017). A critique of navigational risk assessment processes for offshore wind farms. Submitted to Energy Research & Social Science.

    Google Scholar 

  • Mehta, D. (2016). Large Eddy simulation of wind farm aerodynamics with energy-conserving schemes. In W. Ostachowicz, M. McGugan, J.-U. Schröder-Hinrichs, & M. Luczak (Eds.), MARE-WINT: New materials and reliability in offshore wind turbine technology (pp. 347–358). Cham: Springer.

    Chapter  Google Scholar 

  • New, L., Bjerre, E., Millsap, B., Otto, M. C., & Runge, M. C. (2015). A collision risk model to predict Avian fatalities at wind facilities: An example using golden eagles, Aquila chrysaetos. PLoS ONE. https://doi.org/10.1371/journal.pone.0130978

    Article  Google Scholar 

  • Ostachowicz, W., McGugan, M., Schröder-Hinrichs, J.-U., & Luczak, M. (Eds.). (2016). MARE-WINT: New materials and reliability in offshore wind turbine technology. Cham: Springer.

    Google Scholar 

  • Samoteskul, K., Firestone, J., Corbett, J., & Callahan, J. (2014). Changing vessel routes could significantly reduce the cost of future offshore wind projects. Journal of Environmental Management, 141, 146–154.

    Article  Google Scholar 

  • Sarker, B. R., & Ibn Faiz, T. (2017). Minimizing transportation and installation costs for turbines in offshore wind farms. Renewable Energy, 101, 667–679.

    Article  Google Scholar 

  • Siemens, A. G. (2014). A macro-economic viewpoint: what is the real cost of offshore wind? Available via Siemens AG. http://www.energy.siemens.com/hq/pool/hq/power-generation/renewables/wind-power/SCOE/Infoblatt-what-is-the-real-cost-of-offshore.pdf. Accessed 1 March 2017.

  • Snyder, B., & Kaiser, M. (2009). Ecological and economic cost-benefit analysis of offshore wind energy. Renewable Energy, 34, 1567–1578.

    Article  Google Scholar 

  • Verfuss, U. K., Sparling, C. E., Arnot, C., Judd, A., & Coyle, M. (2016). Review of offshore wind farm impact monitoring and mitigation with regard to marine mammals. In A. N. Popper & A. Haw-kins (Eds.), The effects of noise on aquatic life II. Advances in experimental medicine and biology (Vol. 875, pp. 1175–1182). New York, NY: Springer.

    Google Scholar 

  • Wang, Y., & Sun, T. (2012). Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies. Renewable Energy, 43, 30–36.

    Article  Google Scholar 

  • Weinzettel, J., Reenaas, M., Solli, C., & Hertwich, E. G. (2009). Life cycle assessment of a floating off-shore wind turbine. Renewable Energy, 34, 742–747.

    Article  Google Scholar 

Further Reading

  • Gibson, E., & Howsam, P. (2010). The legal framework for offshore wind farms: A critical analysis of the consents process. Energy Policy, 38, 4692–4702.

    Article  Google Scholar 

  • Wright, G., Mehdi, R. A., & Baldauf, M. (2016). 3-dimensional forward looking sonar: Off-shore wind farm applications. In: Proceedings of the 24th European Navigation Con-ference (ENC 2016), European Group of Institutes of Navigation, Helsinki 30 May – 2 June 2016.

    Google Scholar 

Download references

Acknowledgements

This research was supported by a Marie Curie Initial Training Network Grant within the 7th European Community Framework Programme. The authors of this work gratefully acknowledge support for this research under the project No. 309395 MARE-WINT provided by the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raza Ali Mehdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehdi, R.A., Schröder-Hinrichs, JU., Ölçer, A.I., Baldauf, M. (2018). A Framework to Improve the Coexistence of Maritime Activities & Offshore Wind Farms. In: Ölçer, A., Kitada, M., Dalaklis, D., Ballini, F. (eds) Trends and Challenges in Maritime Energy Management. WMU Studies in Maritime Affairs, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-74576-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74576-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74575-6

  • Online ISBN: 978-3-319-74576-3

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics