Skip to main content

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 14))

  • 516 Accesses

Abstract

In this chapter we discuss hydrothermal and metasomatic processes that have taken place in impact structures, subsequent to the collapse of the transient cavity and the cooling of the melt sheet and melt rocks. Most of what follows is drawn from Pirajno et al. (Aust J Earth Sci 50:775–796, 2003), Pirajno (Aust J Earth Sci 52:587–620, 2005) and Pirajno and Van Kranendonk (Aust J Earth Sci 52:329–352, 2005), particularly for the Australian examples. The flow of hot aqueous solutions commonly results in the formation of mineral deposits. Therefore, knowledge of post-impact hydrothermal activity is important because it may have resulted in economic mineral deposits. The world-class and widely known Sudbury mineral deposits (Ni, Cu, PGE, Pb, Zn, Au) are perhaps the best and most celebrated expression of mineralization directly related to a meteorite impact (Lightfoot, Nickel sulfide ores and impact melts – origin of the Sudbury Igneous Complex. Elsevier, Amsterdam, 662pp, 2016). Several lines of evidence suggest that the giant gold deposits of the Witwatersrand in South Africa may have been reworked or even enhanced by the effects of the large Vredefort impact structure. These cases will be examined briefly in the sections that follow. Hydrothermal circulation systems associated with impact events have been reported from the Ries (Germany), Puchezh-Katunki (Russia), Jämtland (Sweden), Roter Kamm (Namibia), Manson (USA), the above-mentioned Vredefort, Kärdla (Estonia), Sudbury and Haughton (Canada) structures (Newsom et al., J Geophys Res 91:E239–E251, 1986; Koeberl et al., Geoch Cosmo Acta 53:2113–2118, 1989; Naumov, Meteoritics 28:408–409, 1993; Sturkel et al., Eur J Miner 10: 589–609, 1998; Ames et al., Geology 26: 447–450, 1998; McCarville and Crossey, Geol Soc Am Sp Pap 302:347–379, 1996); Grieve and Thierriault, Annu Rev Earth Planet Sci 28: 305–338, 2000; Osinski et al., Meteor Planet Sci 36:731–745, 2001; Molnár et al., Econ Geol 96:1645–1670, 2001; Puura et al., Impact-induced replacement of plagioclase by K-feldspar in granitoids and amphibolites at the Kärdla crater, Estonia. In: Gilmour I, Koeberl C (eds) Impacts and the early earth. Springer-Verlag, Berlin, pp 417–445, 2000 and Geochemistry of K-enriched impactites, based on drillings into the Kärdla Crater, Estonia. Geol Soc Am Abs with Programs, Denver, Oct. 2002, p 341, 2002). Recently, aspects of hydrothermal alteration in the Chicxulub impact structure have been published in Meteoritic and Space Science (Lüders and Rickers, Meteor Planet Sci 39:1187–1198, 2004; Zürcher and Kring, Meteor Planet Sci 39:1199–1222, 2004; Goto et al., Meteor Planet Sci 39:1233–1247, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CC, Gooding JL, Keil K (1982) Hydrothermally altered impact melt rock and breccia: contributions to the soil of Mars. J Geophys Res 87:10083–10101

    Article  Google Scholar 

  • Ames DE, Watkinson DH, Parrish RR (1998) Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 26:447–450

    Article  Google Scholar 

  • Ames DE, Kjarsgaard IM, Pope KO, Dressler B, Pilkington M (2004) Secondary alteration of the impactite and mineralization in the basal tertiary sequence, Yaxcopoil-1, Chicxulub impact crater, Mexico. Meteor Planet Sci 39:1145–1167

    Article  Google Scholar 

  • Buffetaut E, Koeberl C (eds) (2002) Geological and biological effects of impact events. Springer, Berlin

    Google Scholar 

  • Bunting JA, De Laeter JR, Libby WG (1980) Evidence for the age and cryptoexplosive origin of the Teague ring structure. Geol Surv West Aust Ann Rep 1980:125–129

    Google Scholar 

  • Carpenter BN, Carlson R (1992) The Ames impact crater. Oklahoma Geol Surv 52:208–223

    Google Scholar 

  • Donofrio RR (1998) North American impact structures hold giant field potential. Oil and Gas J 96:69–83

    Google Scholar 

  • Dressler BO, Sharpton VL (eds) (1999) Large meteorite impacts and planetary evolution II. Geo Soc Am Sp Pap 339

    Google Scholar 

  • Forsman NF, Gerlach TR, Anderson NL (1996) Impact origin of the Newport structure, Williston Basin, North Dakota. Am Ass Petrol Geol Bull 80:721–730

    Google Scholar 

  • French BM (1998) Traces of catastrophe – a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. Lunar Planet Ins Contr 954, Houston, Texas, 120pp

    Google Scholar 

  • Frimmel HE, Groves DI, Kirk J, Ruiz J, Chesley J, Minter WEL (2005) The formation and preservation of the Witwatersrand goldfields, the world’s largest gold province. Econ Geol 100th Ann Vol: 769–97

    Google Scholar 

  • Gibson RL, Reimold WU (1999) Significance of the Vredefort Dome for metamorphic-mineralization studies in the Witwatersrand Basin. Miner Petr 66:25–53

    Article  Google Scholar 

  • Gibson RL, Reimold WU (2001) The Vredefort impact structure, South Africa – the scientific evidence and a two-day excursion guide. Council Geosc S Afr Memoir 92

    Google Scholar 

  • Gibson RL, Stevens G (1998) Regional metamorphism due to non-orogenic cratonic magmatism. Geol Soc London Sp Publ 138:121–135

    Article  Google Scholar 

  • Gilmour I, Koeberl C (2000) Impacts and the early Earth. Springer, Berlin, 448pp

    Google Scholar 

  • Glikson A (1998) Eugene Shoemaker and the impact paradigm in Earth and planetary science. Celest Mech Dyn Astron 69:1–7

    Article  Google Scholar 

  • Glikson A, Mory AJ, Iasky RP, Pirajno F, Golding SD, Uysal LT (2005) Woodleigh, Southern Carnarvon Basin, Western Australia: history of discovery, Late Devonian age, and geophysical and morphometric evidence for a 120 km-diameter impact structure. Aust J Earth Sci 52:545–553

    Article  Google Scholar 

  • Glikson A, Hickman A, Vickers J (2008) Hickman Crater, Ophthlamia Range, Western Australia: evidence supporting a meteorite impact origin. Aust J Earth Sci 55:1107–1117

    Google Scholar 

  • Golightly JP (1984) The Sudbury Igneous Complex as an impact melt: evolution and ore genesis. Ontario Geol SurvSp Vol 5:105–118

    Google Scholar 

  • Gorter JD (1998) The petroleum potential of Australian Phanerozoic impact structures. APPEA J 38:159–187

    Article  Google Scholar 

  • Goto K, Tada R, Bralower TJ, Hasegawa T, Matsui T (2004) Evidence for ocean water invasion into the Chicxulub crater at the cretaceous/tertiary boundary. Meteor Planet Sci 39:1233–1247

    Article  Google Scholar 

  • Grady MM, Hutchinson R, McCall GJH, Rothery DA (eds) (1998) Meteorites: flux with time and impact effects. Geol Soc London Sp Publ 140

    Google Scholar 

  • Grieve RAF (2003) Extraterrestrial triggers for resource deposits. Ext Abs Appl Earth Sci 112(2):B145–B147

    Google Scholar 

  • Grieve RAF, Masaitis VL (1994) The economic potential of terrestrial impact craters. Int Geol Revi 36:105–151

    Article  Google Scholar 

  • Grieve RAF, Therriault A (2000) Vredefort, Sudbury and Chicxulub: three of a kind? Annu Rev Earth Planet Sci 28:305–338

    Article  Google Scholar 

  • Hayward CL, Reimold WU, Robb LJ, Gibson RL (2003) The Witwatersrand gold deposit, South Africa: an impact-modified metamorphosed placer. In: McDonald I, Annels AE, Bevins RE, Boyce AJ, Brabham PJ, Butler IB, Herrington RJ, Polya DA (eds), World Class Mineral Deposits, Extended Abstracts, The Geological Society’s 2003 Fermor Flagship Meeting, B147–B148

    Google Scholar 

  • Hildebrand AR, Pilkington M (2002) Crater floor exhalative (Crafex) sulphide deposits at the Chicxulub crater, Yucatan, Mexico. Lunar Planet Sci XXXIII:2031

    Google Scholar 

  • Hough RM, Gilmour I, Pillinger CT, Arden JW, Glikes KWR, Yuan J, Milledge HJ (1995) Diamond and silicon carbide of impact melt rock from the Ries crater. Nature 378:41–44

    Article  Google Scholar 

  • Iasky R, Mory AJ, Blundell K (2001) The geophysical interpretation of the Woodleigh impact structure, southern Carnarvon Basin, Western Australia. Geol Surv West Aust Report 79

    Google Scholar 

  • Johansson Å (1984) Geochemical studies on the Boda Pb-Zn deposit in the Siljan astrobleme, central Sweden. Geol Fören Stockh Förh 106:15–25

    Article  Google Scholar 

  • Johnson GI (1991) The petrology, geochemistry and geochronology of the felsic alkaline suite of the eastern Yilgarn block, Western Australia: PhD thesis (unpublished), University of Adelaide, p 192

    Google Scholar 

  • Kirschner CE, Grantz A, Mullen MW (1992) Impact origin of the Avak structure, Arctic Alaska and genesis of the Barrow gas fields. Am Ass Petrol Geol Bull 76:651–679

    Google Scholar 

  • Koeberl C, Henkel H (eds) (2005) Impact tectonics. Springer, Berlin, 552pp

    Google Scholar 

  • Koeberl C, Fredrikson K, Götzinger M, Reimold WU (1989) Anomalous quartz from the Roter Kamm impact crater, Namibia: evidence for post impact hydrothermal activity? Geochim Cosmochim Acta 53:2113–2118

    Google Scholar 

  • Koeberl C, Masaitis VL, Shafranovsky GI, Gilmour I, Langenhorst F, Schrauder M (1997) Diamonds from the Popigai impact structure, Russia. Geology 25:967–970

    Article  Google Scholar 

  • Komor SC, Valley JW, Brown PE (1988) Fluid-inclusion evidence for impact heating at the Siljan Ring, Sweden. Geology 16:711–715

    Article  Google Scholar 

  • Kring DA (1995) The dimension of the Chicxulub impact crater and impact melt sheet. J Geophys Res 100:16 979–16 989

    Article  Google Scholar 

  • Law JDM, Phillips GN (2005) Hydrothermal replacement model for Witwatersrand gold. Econ Geol 100th Ann Vol: 799–811

    Google Scholar 

  • Lightfoot P (2016) Nickel sulfide ores and impact melts – origin of the Sudbury Igneous Complex. Elsevier, Amsterdam, 662pp

    Google Scholar 

  • Lüders V, Rickers K (2004) Fluid inclusion evidence for impact-related hydrothermal fluid and hydrocarbon migration in Cretaceous sediments of the ICDP-Chicxulub drill core Yax-1. Meteor Planet Sci 39:1187–1198

    Article  Google Scholar 

  • Macdonald FA, Bunting JA, Cina SE (2003) Yarrabubba – a large, deeply eroded impact structure in the Yilgarn Craton, Western Australia. Earth Planet Sci Lett 213:235–247

    Article  Google Scholar 

  • Masaitis VL, Naumov MV (1993) Puchezh-Katunki impact crater: preliminary model of hydrothermal circulation system. Meteor 7:390–391

    Google Scholar 

  • McCarville P, Crossey LJ (1996) Post-impact hydrothermal alteration of the Manson impact structure. Geol Soc Am Sp Pap 302:347–379

    Google Scholar 

  • Melosh HJ (1989) Impact cratering – a geologic process. Oxford University Press. Oxford, 246pp

    Google Scholar 

  • Molnár F, Watkinson DH, Jones PC (2001) Multiple hydrothermal processes in footwall units of the North Range, Sudbury Igneous Complex, Canada, and implications for the genesis of vein-type Cu-Ni-PGE deposits. Econ Geol 96:1645–1670

    Article  Google Scholar 

  • Mory AJ, Iasky RP, Glikson AY, Pirajno F (2000) Woodleigh, Carnarvon Basin, Western Australia: a new 120 km-diameter impact structure. Earth Planet SciLett 177:119–128

    Article  Google Scholar 

  • Mory AJ, Pirajno F, Glikson AY, Coker J (2001) GSWA Woodleigh 1, 2, and 2A well completion report: Woodleigh impact structure, Southern Carnarvon Basin, Western Australia. Geol Surv West Aust Record 2001/6

    Google Scholar 

  • Naldrett AJ (2002) From impact to riches: evolution of geological understanding as seen at Sudbury, Canada. GSA Today 13:4–10

    Article  Google Scholar 

  • Naumov MV (1993) Zonation of hydrothermal alteration in the central uplift of the Puchezh-Katunki astrobleme. Meteoritics 28:408–409

    Google Scholar 

  • Naumov MV (2002) Impact-generated hydrothermal systems: data from Popigai, Kara and Puchezh-Katunki impact structures. In: Plado J, Pesonen LJ (eds) Impacts in precambrian shields. Impact studies series. Springer, Berlin, pp 117–171

    Chapter  Google Scholar 

  • Nelson DR (1999) Compilation of geochronology data 2000. Geol Surv West Aust Record 1999/2

    Google Scholar 

  • Newsom HE (1980) Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44:207–219

    Article  Google Scholar 

  • Newsom HE, Graup G, Sewards T, Keil K (1986) Fluidization and hydrothermal alteration of the suevite deposit at the Ries Crater, West Germany, and implications for Mars. J Geophys Res 91:E239–E251

    Article  Google Scholar 

  • Osinski GR, Spray JG, Lee P (2001) Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: generation of a transient, warm, wet oasis. Meteor Planet Sci 36:731–745

    Article  Google Scholar 

  • Pevzner LA, Kirjakov AF, Vorontsov AK, Masaitis VL, Mashchak MS, Ivanov BA (1992) Vorotilovskaya drillhole; first deep drilling in the central uplift of large terrestrial impact crater. 23rd Lunar Planetary Science Conference, Houston, Abstract volume, pp 1063–1064

    Google Scholar 

  • Phillips GN (1987) Metamorphism of the Witwatersrand gold fields: conditions during peak metamorphism. J Meta Geol 5:307–322

    Article  Google Scholar 

  • Phillips GN (1988) Widespread fluid infiltration during metamorphism of the Witwatersrand gold fields: generation of chloritoid and pyrophyllite. J Metamorph Geol 6:311–332

    Article  Google Scholar 

  • Phillips D, Onstott TC, Harris JW (1989) 40Ar/39Ar laser-probe dating of diamond inclusions from the Premier kimberlite. Nature 340:460–462

    Article  Google Scholar 

  • Pirajno F (2000) Ore deposits and mantle plumes. Kluwer Academic Publ, Dordrecht

    Book  Google Scholar 

  • Pirajno F (2002) Geology of the Shoemaker impact structure, Western Australia. Geol Surv West Aust Rep 82

    Google Scholar 

  • Pirajno F (2005) Hydrothermal processes associated with meteorite impact structures: evidence from three Australian examples and implications for economic resources. Aust J Earth Sci 52:587–620

    Article  Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Dordrecht, p 1250

    Book  Google Scholar 

  • Pirajno F, Glikson AY (1998) Shoemaker impact structure, Western Australia. Celest Mech Dyn Astron 69:25–30

    Article  Google Scholar 

  • Pirajno F, Van Kranendonk MJ (2005) Review of hydrothermal processes and systems on Earth and implications for martian analogues. Aust J Earth Sci 52:329–352

    Article  Google Scholar 

  • Pirajno F, Hawke P, Glikson AY, Haines P, Uysal T (2003) Shoemaker impact structure, Western Australia. Aust J Earth Sci 50:775–796

    Article  Google Scholar 

  • Puura V, Kärki A, Kirs J, Kirsimäe K, Kleesment A, Konsa M, Niin M, Plado J, Suuroja K, Suuroja S (2000) Impact-induced replacement of plagioclase by K-feldspar in granitoids and amphibolites at the Kärdla Crater, Estonia. In: Gilmour I, Koeberl C (eds) Impacts and the early Earth. Springer, Berlin, pp 417–445

    Chapter  Google Scholar 

  • Puura V, Koeberl C, Kärki A, Juvonen R, Konsa Plado JM, Suuroja K, Kirs J, Huber H (2002) Geochemistry of K-enriched impactites, based on drillings into the Kärdla Crater, Estonia. Geol Soc Am Abs with Programs, Denver, Oct. 2002, p 341

    Google Scholar 

  • Reimold WU (1995) Impact cratering – a review, with special reference to the economic importance of impact structures and the southern African impact crater record. Earth Moon Planets 70:21–45

    Article  Google Scholar 

  • Reimold WU, Gibson RL (1999) Geology and evolution of the Vredefort impact structure, South Africa. J Afr Earth Sci 23:125–162

    Article  Google Scholar 

  • Reimold WU, Gibson RL (2005) Meteorite impact! The danger from space and South Africa’s mega-impact – the Vredefort structure. Chris van Rensburg Publ Pty Ltd, Johannesburg

    Google Scholar 

  • Reimold WU, Köeberl C, Fletcher P, Killick AM, Wilson JD (1999) Pseudotachylite breccias from fault zones in the Witwatersrand Basin, South Africa: evidence of autometasomatism and post-brecciation alteration processes. Miner Petr 66:25–53

    Article  Google Scholar 

  • Reimold WU, Koeberl C, Hough R, Mcdonald I, Bevan A, Amare K, French BM (2003) Woodleigh impact structure: shock petrography and geochemical studies. Meteor Planet Sci 7:1109–1130

    Article  Google Scholar 

  • Reimold WU, Koeberl C, Gibson RL, Dressler BO (2005) Economic mineral deposits in impact structures: a review. In: Koeberl C, Henkel H (eds) Impact tectonics. Springer, Berlin, pp 479–552

    Chapter  Google Scholar 

  • Rowe AJ, Wilkinson JJ, Coles BJ, Morgan JV (2004) Chicxulub: testing for post-impact hydrothermal input into the Tertiary ocean. Meteor Planet Sci 39:1223–1231

    Article  Google Scholar 

  • Scrimgeour IR, Close DF, Edgoose CJ (1999) Peterman ranges SG52–7 explanatory notes. Northern Territory Geol Surv Dept Mines and Energy

    Google Scholar 

  • Smithies RH, Champion DC (1999) Late Archean felsic alkaline igneous rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: a result of lower crustal delamination? J Geol Soc Lond 156:561–579

    Article  Google Scholar 

  • Sturkel FF, Broman C, Forsberg P, Torsander P (1998) Impact-related hydrothermal activity in the Lockne impact structure, Jämtland, Sweden. Eur J Miner 10:589–609

    Article  Google Scholar 

  • Tyler IM (2005) Australia: Proterozoic. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of geology, vol 1. Elsevier, Oxford, pp 208–221

    Chapter  Google Scholar 

  • Uysal IT, Golding S, Glikson AY, Mory M, Glikson M (2001) K-Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, southern Carnarvon Basin, Western Australia. Earth Planet Sci Lett 192:281–289

    Article  Google Scholar 

  • Uysal IT, Golding S, Glikson AY, Mory M, Glikson M, Iasky RP, Pirajno F (2002) Reply to Comment on: K-Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, southern Carnarvon Basin, Western Australia. Earth Planet Scien Lett 201:253–260

    Article  Google Scholar 

  • Wingate MTD, Pirajno F, Morris PA (2004) Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32:105–108

    Article  Google Scholar 

  • Witt WK, Davy R (1997) Geology and geochemistry of Archaean granites in the Kalgoorlie region of the Eastern Goldfields, Western Australia: a syn-collisional tectonic setting? Precambr Res 83:133–183

    Article  Google Scholar 

  • Zürcher L, Kring DA (2004) Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. Meteor Planet Sci 39:1199–1222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glikson, A.Y., Pirajno, F. (2018). Asteroids and Associated Mineral Systems. In: Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia. Modern Approaches in Solid Earth Sciences, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-74545-9_7

Download citation

Publish with us

Policies and ethics