Skip to main content

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 14))

  • 525 Accesses

Abstract

The geological antiquity of Australian land surfaces and the sedimentary and volcanic cover of Precambrian cratons in the central and western parts of the continent, allow preservation of a range of circular features, including morphological and drainage rings, circular lakes, volcanic craters, tectonic domes, oval granite bodies, mafic igneous plugs, salt diapirs, and magnetic, gravity and seismic anomalies of unknown origin. These include 38 confirmed asteroid and meteorite impact structures and craters and more than 40 ring, dome and crater features of unknown origin. Many of these structures display structural and geophysical elements consistent with impacts. Exposed features include circular crater-like morphological patterns which may intersect pre-existing linear structural features, central morphological highs and unique thrust and fault patterns. Buried circular features include single or multi-ring magnetic patterns, circular magnetic quiet zones, corresponding gravity patterns and low velocity and non-reflective seismic zones. Discrimination between impact structures and igneous plugs, volcanic caldera and salt domes requires field work possibly drilling. Large circular structures such as Mount Ashmore and Gnargoo are considered to have convincing structural deformation features to warrant classification as likely impact structures. Examples of crater-form features containing elements consistent with, but unproven to be of, impact origin include Auvergne, Delamere, Fiery Creek, Monte Christo, Mount Moffatt, Tanami East, Youngerina, Tingha. Examples of buried multi-ring features of possible to probable impact origin include Augathella, Balfour Downs, Calvert Hills, Camooweal, Green Swamp Well, Herbert, Ikybon River, Ilkurka, Lennis, McLarty Hills, Mount Davies, Mulkara, Neale, Sheridan Creek, Oodjuongari and Renehan. The origin of the very large circular magnetic and gravity pattern of the Diamantina River drainage feature and the multiple TMI ring pattern of the Deniliquin-Booligal region remains unresolved. Compared with frequency distribution patterns of extra-terrestrial impact structures worldwide, the Australian record displays a relatively a common occurrence of large impact structures and relative depletion in small impact structures and craters, explained by the better preservation of large structures at deep crustal zones as compared to the erosion of small craters, and a good geophysical coverage of large parts of the continent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abels A (2005) Spider impact structure, Kimberley Plateau, Western Australia: interpretations of formation mechanism and age based on integrated map-scale data. Aust J Earth Sci 52:653–663

    Article  Google Scholar 

  • Beere GM (1983) The Piccaninny structure – a cryptoexplosive feature in the Ord Basin, East Kimberly. Geological Survey of Western Australia Record 1983/6

    Google Scholar 

  • Bevan A (1996) Meteorites recovered from Australia. J R Soc of West Aust 79(1):33–42

    Google Scholar 

  • Bevan A, Hough R, Hawke (2004) Morphology and origin of an allochtonous breccia near the Yallalie structure, Western Australia: evidence for subaqueous impact? Geol Soc Aust Abstr 73:227

    Google Scholar 

  • Boxer (2014) Grant boxer webpages. http://members.iinet.net.au/~gboxer/Index.html

  • Brett R, Guppy DJ, Milton DJ (1970) Two circular structures of impact origin in Northern territory Australia. Meteorit 5:184

    Google Scholar 

  • Bron KA, Gostin V (2012) The Tookoonooka marine impact horizon Australia: sedimentary and petrologic evidence. Meteorit Planet Sci 47:296–318

    Article  Google Scholar 

  • Brown AR (1973) A detailed seismic study of Gosses Bluff, Northern territory, Bureau of Mineral Resources Report 163. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Bunting JA, de Laeter JR, Libby WG (1980) Evidence for the age and cryptoexplosive origin of the Teague ring structure Western Australia. Geol Surv W Aust Ann Rev 1980:81–85

    Google Scholar 

  • Butler H (1974) The Lake Teague ring structure Western Australia: an astrobleme? Search 5:536–537

    Google Scholar 

  • Carson LJ, Haines PW, Brakel A, Pietsch BA, Ferenczi PA (1999) Millingimbi, Northern territory, 1:250 000 geological series explanatory notes SD53–2, Northern territory geological survey, Darwin

    Google Scholar 

  • Crook KA, Cook PJ (1966) Gosses Bluff diaper, cryptovolcanic structure, or astroblemes. J Geol Soc Aust 13:495–516

    Article  Google Scholar 

  • Darlington V et al (2016) The Lawn Hill annulus: an Ordovician meteorite impact into water-saturated dolomite. https://researchonline.jcu.edu.au/47631

  • Dentith MC, Bevan AWR, McInerney KB (1992) A preliminary investigation of the Yallalie Basin: a buried 15 km diameter structure of possible impact origin in the Perth Basin, WA. Meteoritics 27:214

    Google Scholar 

  • Dentith MC, Bevan AWR, Backhouse J, Featherstone WE, Koeberl C (1999) Yallalie: a buried structure of possible impact origin in the Perth Basin, West Aust. Geol Mag 136:619–632

    Article  Google Scholar 

  • Dunster JN, Haines PW, Munson TJ (2014) Meteorites and impact structures in the Northern territory. Northern Territory Geol Surv Rec 2014:007

    Google Scholar 

  • Ford RJ (1972) A possible impact crater associated with Darwin glass. Earth Planet Sci Lett 16:228–230

    Article  Google Scholar 

  • Fudali RF, Ford RJ (1979) Darwin glass and Darwin crater: a progress report. Meteoritics 14:283–296

    Article  Google Scholar 

  • Glikson AY (1969) Geology of the outer zone of the Gosses Bluff crypto-explosion structure, Northern Territory. Bur Min Resour Rec. 1969/42

    Google Scholar 

  • Glikson AY (2008) Field evidence of Eros-scale asteroids and impact-forcing of Precambrian geodynamic episodes, Kaapvaal (South Africa) and Pilbara (Western Australia) Cratons. Earth Planet Sci Lett 267:558–570

    Article  Google Scholar 

  • Glikson AY, Eggins S, Golding S, Haines P, Iasky RP, Mernagh TP, Mory AJ, Pirajno F, Uysal IT (2005a) Microchemistry and microstructures of hydrothermally altered shock-metamorphosed basement gneiss, Woodleigh impact structure, Southern Carnarvon Basin, Western Australia. Aust J Earth Sci 52:555–573

    Article  Google Scholar 

  • Glikson A, Mory AJ, Iasky R, Pirajno F, Golding S, Uysal IT (2005b) Woodleigh, Southern Carnarvon Basin, Western Australia: history of discovery late Devonian age and geophysical and morphometric evidence for a 120 km-diameter impact structure. Aust J Earth Sci 52:545–553

    Article  Google Scholar 

  • Glikson AY, Hickman AH, Vickers J (2008) Hickman Crater, Ophthalmia Range, Western Australia: evidence supporting a meteorite impact origin. Aust J Earth Sci 55:1107–1117

    Article  Google Scholar 

  • Glikson AY, Jablonski D, Westlake S (2010) Origin of the Mount Ashmore structural dome west Bonaparte basin Timor Sea. Aust J Earth Sci 57:411–430

    Article  Google Scholar 

  • Glikson AY, Uysal IT, Fitz Gerald JD, Saygin E (2013) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: tectonic or impact shock metamorphic origin? Tectonophysics 589:57–76

    Article  Google Scholar 

  • Glikson AY, Meixner AJ, Radke B, Uysal IT, Saygin E, Vickers J, Mernagh TP (2015) Geophysical anomalies and quartz deformation of the Warburton West structure, central Australia. Tectonophysics 643:55–72

    Article  Google Scholar 

  • Glikson AY, Hickman AH, Evans NJ, Kirkland CI, Jung-WP RR, Romano S (2016) A new 3.46 Ga asteroid impact ejecta unit at Marble Bar, Pilbara Craton, Western Australia: a petrological, microprobe and laser ablation ICPMS study. Precamb Res 279:103–122

    Article  Google Scholar 

  • Gorter JD, Glikson AY (2012) Talundilly Western Queensland Australia: geophysical and petrological evidence for an 84 km-large impact structure and an early cretaceous impact cluster. Aust J Earth Sci 59:51–73

    Article  Google Scholar 

  • Gorter JD, Gostin VA, Plummer P (1989) The Tookoonooka structure: an enigmatic sub-surface feature in the Eromanga basin its impact origin and implications for petroleum exploration In: O’Neil BJ (ed) The Cooper and Eromanga basins Australia: Proceedings of the Cooper and Eromanga Basins conference Adelaide, pp 441–456

    Google Scholar 

  • Gostin VA, Therriault AM (1997) Tookoonooka: a large buried early Cretaceous impact structure in the Eromanga basin of southwestern Queensland Australia. Meteorit Planet Sci 32:593–599

    Article  Google Scholar 

  • Gostin VA, Zbik M (1999) Petrology and microstructure of distal impact ejecta from the Flinders Ranges, Australia. Meteorit Planet Sci 34:587–592

    Article  Google Scholar 

  • Gostin VA, Haines PW, Jenkins RJF, Compston W, Williams IS (1986) Impact ejecta horizon within late Precambrian shales, Adelaide Geosyncline, South Australia. Science 233:198–200

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG, Bleeker W, Laurens LJ (2004) A new geologic timescale with special reference to Precambrian and Neogene. Episodes 72:83–100

    Google Scholar 

  • Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball earth or aftermath of the Acraman impact? Geology 31:469–472

    Article  Google Scholar 

  • Guppy DJ, Matherson RS (1950) Wolfe Creek meteorite crater, Western Australia. J Geol 58:30–36

    Article  Google Scholar 

  • Guppy DJ, Brett R, Milton DJ (1971) Liverpool and strangways craters, Northern territory; two structures of probable impact origin. J Geophys Res 76:5387–5393

    Article  Google Scholar 

  • Haines PW (1996) Goyder impact structure, Arnhem land, Northern territory. AGSO J Aust Geol Geophys 16:561–566

    Google Scholar 

  • Haines PW (2005) Impact cratering and distal ejecta: the Australian record. Aust J Earth Sci 52:481–507

    Article  Google Scholar 

  • Haines PW (2014) Collaborative scientific drilling at Hickman Crater. GSWA extended abstracts 2014, GSWA Record 2014/2, p. 1–4

    Google Scholar 

  • Haines PW, Rawlings DJ (2002) The Foelsche structure, Northern territory, Australia: an impact crater of probable Neoproterozoic age. Meteorit Planet Sci 37:269–280

    Article  Google Scholar 

  • Haines PW, Therriault AM, Kelly SP (1999) Evidence for mid-Cenozoic(?) low-angle multiple impacts in South Australia. Meteorit Planet Sci 34(Suppl):A49–A50

    Google Scholar 

  • Haines P, Sweet I, Mitchell K (2012) The Cleanskin structure. 75th annual meteoritical society meeting. https://www.lpi.usra.edu/meetings/metsoc2012/pdf/5176.pdf

  • Harms JE, Milton DJ, Ferguson J, Gilbert DJ, Harris WK, Golby B (1980) Goat Paddock cryptoexplosion crater, Western Australia. Nature 286:704–706

    Article  Google Scholar 

  • Hawke PJ (2003) Some ring-like magnetic anomalies in impact structures and their possible causes. 3rd international conference on large meteorite impacts conference, August 2003, Nordlingen, Germany, abstract 4064

    Google Scholar 

  • Hill AC, Grey K, Gostin VA, Webster LJ (2004) New records of late neoproterozoic Acraman ejecta in the officer basin. Aust J Earth Sci 51:47–51

    Article  Google Scholar 

  • Hodge PW, Wright FW (1973) Particles around Boxhole meteorite crater. Meteoritics 8:315–320

    Article  Google Scholar 

  • Howard KT (2003) Geochemical systematics in Darwin impact glass. Meteorit Planet Sci 38(Suppl):A47

    Google Scholar 

  • Howard KT, Haines P (2004) Fire in the sky above SW Tasmania: the Darwin meteorite impact. Geological Society of Australia Abstracts 73:235

    Google Scholar 

  • Iasky RP, Glikson AY (2005) Gnargoo: a possible 75 km-diameter post-early Permian–pre-cretaceous buried impact structure Carnarvon Basin Western Australia. Aust J Earth Sci 52:577–586

    Article  Google Scholar 

  • Iasky RP, Mory AJ, Blundell KA (2001) The geophysical interpretation of the Woodleigh impact structure Southern Carnarvon Basin. West Aust Geol Surv of West Aust Rep 79

    Google Scholar 

  • Kohman TP, Goel PS (1963) Terrestrial ages of meteorites from cosmogenic 14C. In: Radioactive dating. International Atomic Energy Agency, Vienna, pp 395–311

    Google Scholar 

  • La Paz L (1954) Meteoritic material from the Wolf Creek, Western Australia, meteorite crater. Meteoritics 1:200–203

    Article  Google Scholar 

  • Longley IM (1989) The Talundilly anomaly and its implications for hydrocarbon exploration of Eromanga astroblemes. In: O’Neil BJ (ed), The Cooper and Eromanga Basins, Australia: Proceedings of the Cooper and Eromanga Basins Conference, Adelaide, pp 473–490. Petroleum Exploration Society of Australia, Society of Petroleum Engineers, Australian Society of Exploration Geophysicists (SA Branches)

    Google Scholar 

  • Macdonald FA, Mitchell K (2003) Amelia Creek, Northern Territory, Australia: a 20 × 12 km oblique impact structure with no central uplift. Impact Cratering: Bridging the Gap Between Modelling and Observations, February 2003, Houston, Texas, p 47. Lunar and Planetary Institute Contribution 1155

    Google Scholar 

  • Macdonald F, Mitchell K (2004) New possible, probable, and proven impact sites in Australia. Geol Soc Aust Abstr 73:239

    Google Scholar 

  • Macdonald FA, Wingate MTD, Mitchell K (2005) Geology and age of the Glikson impact structure, Western Australia. Aust J Earth Sci 52:641

    Article  Google Scholar 

  • Madigan CT (1937) The Boxhole crater and the Huckitta meteorite (central Australia). Trans Proc R Soc S Aust 6:187–190

    Google Scholar 

  • McHone JF, Greeley R, Williams KK, Blumberg DG, Kuzmin RO (2002) Space shuttle observations of terrestrial impact structures using SIR –C and X–SAR radars. Meteorit Planet Sci 37:407–420

    Article  Google Scholar 

  • McNamara K (1982) Wolf Creek Crater. Western Australian Museum/Advance Press, Perth

    Google Scholar 

  • Milton DJ (1968) Structural geology of the Henbury meteorite craters, Northern Territory, Australia. Geological Survey professional paper 599-C

    Google Scholar 

  • Milton DJ, Macdonald FA (2005) Goat Paddock, Western Australia: an impact crater near the simple – complex transition. Aust J Earth Sci 52:691–698

    Article  Google Scholar 

  • Milton DJ, Sutter JF (1987) Revised age for the Gosses Bluff impact structure, Northern territory, Australia, based on 40Ar/39Ar dating. Meteoritics 22:281–289. y & Geophysics 16, 453 – 486

    Article  Google Scholar 

  • Milton DJ, Barlow DJ, Brett R, Brown A, Manwaring EA, Moss FJ, Sedmik E, Van Son J, Young A (1972) Gosses Bluff impact structure, Australia. Science 175:1199–1207

    Article  Google Scholar 

  • Milton DJ, Glikson AY, Brett R (1996a) Gosses Bluff–a latest Jurassic impact structure, central Australia. Part 1: geological structure, stratigraphy, and origin. AGSO Journal of Australian Geological structure stratigraphy and origin. AGSO J Aust Geol Geophys 16:453–486

    Google Scholar 

  • Milton DJ, Barlow DJ, Brett R, Brown A, Manwaring EA, Moss FJ, Sedmik E, Van Son J, Young A (1996b) Gosses Bluff—a latest Jurassic impact structure, central Australia. Part 2: seismic, magmatic, and gravity studies. AGSO J Aust Geol Geophys 16:487–527

    Google Scholar 

  • Mory AJ, Iasky RP, Glikson AY, Pirajno F (2000) Woodleigh Carnarvon basin, Western Australia: a new 120 km-diameter impact structure. Earth Planet Sci Lett 177:119–128

    Article  Google Scholar 

  • Nininger HH, Huss GI (1960) The unique meteorite crater at Dalgaranga, Western Australia. Mineral Mag 32:619–639

    Article  Google Scholar 

  • O’Neill C, Heine C (2005) Reconstructing the Wolfe Creek Meteorite impact: deep structure of the crater and effects on target rock. Aust J Earth Sci 52:699–710

    Article  Google Scholar 

  • Passey QR, Melsoh HJ (1980) Effects of Atmospheric Breakup on Crater Field Formation. Icarus 42:211–233

    Article  Google Scholar 

  • Pirajno F (2005) Hydrothermal processes associated with meteorite impact structures: the evidence from three Australian examples and implications for economic resources. Aust J Earth Sci 52:587–605

    Article  Google Scholar 

  • Pirajno F, Glikson AY (1998) Shoemaker impact structure Western Australia (formerly Teague ring structure). Celest Mech Dyn Astron 69:25–30

    Article  Google Scholar 

  • Pirajno F, Hawke P, Glikson AY, Haines PW, Uysal T (2003) Shoemaker impact structure Western Australia. Aust J Earth Sci 50:775

    Article  Google Scholar 

  • Plescia JB (1999) Gravity signature of Teague Ring impact structure, Western Australia. Geol Soc Am Spec Pap 339:165–175

    Google Scholar 

  • Plescia JB (2006) Kelly West impact structure. Lunar Planet Sci XXXVII(2006)

    Google Scholar 

  • Reeves F, Chalmers RO (1949) The Wolf Creek crater. Aust J Sci 11:145–156

    Google Scholar 

  • Richardson RG (1991) Geophysical surveys of Darwin crater. Geophys Down Under 13:13–14

    Google Scholar 

  • Rix P (1965) Milingimbi, Northern Territory, 1:250 000 Geological Series Explanatory Notes SD53–2. Bureau of Mineral Resources, Canberra

    Google Scholar 

  • Roberts HG, Halligan R, Gemuts I (1965) Geology of the Mount Ramsay 1:250 000 sheet area, E/52–9, Western Australia. Bureauof Mineral Resources Record 1965/156

    Google Scholar 

  • Salisbury JA, Tomkins AG, Schaefer BF (2008) New insights into the size and timing of the Lawn Hill impact structure: relationships to the Century Zn-Pb deposit. Aust J Earth Sci 55:587–603

    Article  Google Scholar 

  • Saygin E, Kennett BLN (2010) Ancient seismic tomography of the Australian continent. Tectonophysics 481:116–125

    Article  Google Scholar 

  • Saygin E, Kennett BLN (2012) Crustal structure of Australia from ambient seismic noise tomography. J Geophys Res 117:B01304

    Article  Google Scholar 

  • Shoemaker EM, Shoemaker CS (1985) Impact structures of Western Australia. Meteoritics 20:754–756

    Article  Google Scholar 

  • Shoemaker EM, Shoemaker CS (1986) Connolly Basin: a probable eroded impact crater in Western Australia. Lunar Planet Sci Conf XVII:797–798

    Google Scholar 

  • Shoemaker EM, Shoemaker CS (1988) The Spider impact structure, Western Australia. Geol Soc Am Abstr Programs 20:147

    Google Scholar 

  • Shoemaker EM, Shoemaker CS (1996) The Proterozoic impact record of Australia. Aust Geol Surv Org J Aust Geol Geophys 16:379–398

    Google Scholar 

  • Shoemaker EM, Shoemaker CS (1997) Notes on the geology of Liverpool Crater, Northern Territory, Australia. Lunar and Planetary Science Conference XXVIII, abstract 1662

    Google Scholar 

  • Shoemaker EM, Shoemaker CS, Nishiizumi K, Kohl CP, Arnold J, Klein J, Fink D, Middleton R, Kubik PW, Sharma P (1990) Ages of Australian meteorite craters; a preliminary report. Meteoritics 25:409

    Google Scholar 

  • Shoemaker EM, Macdonald FA, Shoemaker CS (2005) Geology of five small Australian impact craters. Aust J Earth Sci 52:529–544

    Article  Google Scholar 

  • Spray JG, Kelley SP, Dence MR (1999) The Strangways impact structure, Northern territory, Australia: geological setting and laser probe 40Ar/39Ar geochronology. Earth Planet Sci Lett 172:199–211

    Article  Google Scholar 

  • Stewart A, Mitchell K (1987) Shatter cones at the Lawn Hill circular structure, northwestern Queensland; presumed astrobleme. Aust J Earth Sci 34:477–485

    Article  Google Scholar 

  • Sweet IP, Haines PW, Mitchell K (2005) The Matt Wilson structure: record of an impact event of possible Early Mesoproterozoic age, Northern territory. Aust J Earth Sci 52:675–689

    Article  Google Scholar 

  • Taylor SR (1965) The Wolf Creek iron meteorite. Nature 208:944–945

    Article  Google Scholar 

  • Tonkin PC (1973) Discovery of shatter cones at Kelly West near Tennant Creek, Northern territory, Australia. J Geol Soc Aust 20:99–102

    Article  Google Scholar 

  • Uysal T, Golding SD, Glikson AY, Mory AJ, Glikson M (2001) K–Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, southern Carnarvon Basin, Western Australia. Earth Planet Sci Lett 192:281–289

    Article  Google Scholar 

  • Wallace MW, Gostin VA, Keays RR (1990) Spherules and shard-like clasts from the late Proterozoic Acraman impact ejecta horizon, South Australia. Meteoritics 25:161–165

    Article  Google Scholar 

  • Wallace MW, Gostin VA, Keays RR (1996) Sedimentology of the Neoproterozoic Acraman impact-ejecta horizon, South Australia. AGSO J Aust Geol Geophys 16:443–451

    Google Scholar 

  • Williams GE (1986) The Acraman impact structure; source of ejecta in late Precambrian shales, South Australia. Science 233:200–203

    Article  Google Scholar 

  • Williams GE, Gostin VA (2005) The Acraman – Bunyeroo impact event (Ediacaran), South Australia, and environmental consequences: 25 years on. Aust J Earth Sci 52:607–620

    Article  Google Scholar 

  • Williams GE, Schmidt PW (2015) Low paleolatitude for the late Cryogenian interglacial succession, South Australia: paleomagnetism of the Angepena Formation, Adelaide Geosyncline. Aust J Earth Sci 62:243–253

    Article  Google Scholar 

  • Williams GE, Wallace MW (2003) The Acraman asteroid impact, South Australia: magnitude and implications for the late Vendian environment. J Geol Soc Lond 160:545–554

    Article  Google Scholar 

  • Williams GE, Schmidt PW, Boyd DM (1996) Magnetic signature and morphology of the Acraman impact structure, South Australia. AGSO J Aust Geol Geophys 16:431–442

    Google Scholar 

  • Yeates AN, Crowe RWA, Towner RR (1976) The Veevers Crater; a possible meteoritic feature. BMR J Aust Geol Geophys 1:77–78

    Google Scholar 

  • Youles IP (1976) Mount Toondina impact structure. Geol Surv S Aust Q Geol Notes 60:10–12

    Google Scholar 

  • Zummersprekel H, Bischoff L (2005) Remote sensing and geographic information system analyses of the Strangways impact structure, Northern territory. Aust J Earth Sci 52:621–630

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glikson, A.Y., Pirajno, F. (2018). Australian Impact Structures >10 Km-Large. In: Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia. Modern Approaches in Solid Earth Sciences, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-74545-9_4

Download citation

Publish with us

Policies and ethics