Skip to main content

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 14))

  • 499 Accesses

Abstract

Geochronological U-Pb zircon dates are increasingly indicative of an episodic nature of the evolution of lithosphere and crust, including tectonic and thermal episodes associated with large asteroid impacts. Documented Archaean and early Proterozoic impacts at ~3.47, ~2.63, ~2.57, ~2.56, ~2.48, ~2.023 Ga (Vredefort) and 1.85 Ga (Sudbury) are considered to represent a minimum impact incidence due to gaps in stratigraphic sequences and the difficulty in identifying impact ejecta/fallout units. Evidence for major dynamic and thermal effects of large impact clusters on the early Precambrian crust is provided by ejecta/fallout units associated with: unconformities, tsunami boulder debris, compositional contrasts between supracrustal sequences that underlie and overlie ejecta units; including an onset of iron-rich sedimentation; and near-contemporaneous intrusion of granitoid magmas. A prime example is a ~3.26–3.24 Ga impact cluster whose fallout units, documented in the Barberton greenstone belt, South Africa, are associated with unconformities. The unconformities constitute abrupt breaks between underlying mafic-ultramafic volcanic sequences and overlying continental sediments which include granitoid detritus, representing granite felsic igneous activity. Geocronologically correlated unconformities and olistostrome mega-breccia are observed in the Pilbara Craton, Western Australia. In these terrains a > 300 Ma-long period of greenstone–granite evolution is abruptly terminated by unconformities overlain by impact ejecta, turbidite and banded iron-formation and associated with major faulting, uplift, erosion, and the onset of high-energy sedimentation including detrital components derived from contemporaneous and older granites. Onset of iron-rich sedimentation, including banded iron-formation, in the wake of these impacts is indicative of weathering and soluble transport of ferrous oxide under low-oxidation atmosphere and hydrosphere conditions, likely representing mafic volcanic activity triggered by the impacts. Depending on the site of the ~2.48 Ga impact, extensive injection of mafic dykes during 2.48–2.42 Ga (Matachewan, Scourie, Karelian, Widgiemooltha, Bangalore, Antarctica dykes) may have been related to deep crust/mantle fractures triggered by mega-impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison WD, Brumpton GR, Vallini DA, McNaughton NJ, Davis DW, Kissin SA, Fralick PW, Hammond AL (2005) Discovery of distal ejecta from the 1850 Ma Sudbury impact event. Geology 33:193–196

    Article  Google Scholar 

  • Arndt NT, Nelson DR, Compston W, Trendall AF, Thorne AM (1991) The age of the Fortescue group, Hamersley basin Western Australia from ion microprobe zircon U-Pb results. Aust J Earth Sci 38:261–281

    Article  Google Scholar 

  • Brauhart CW, Groves DI, Morant P (1998) Regional alteration systems associated with volcanogenic massive sulfide mineralization at Panorama, Pilbara, Western Australia. Econ Geol 93:292–302

    Article  Google Scholar 

  • Buick R, Brauhart CW, Morant P (2002) Geochronology and stratigraphic relationships of the Sulphur Springs Group and Strelley Granite: a temporally distinct igneous province in the Archaean Pilbara Craton, Australia. Precambrian Res 114:87–120

    Article  Google Scholar 

  • Byerly GR, Lowe DR (1994) Spinels from Archaean impact spherules. Geochim Cosmochim Acta 58:3469–3486

    Article  Google Scholar 

  • Byerly GR, Kröner A, Lowe DR, Todt W, Walsh MM (1996) Prolonged magmatism and time constraints for sediments deposition in the early Archaean Barberton greenstone belt: evidence from the upper onverwacht and fig tree groups. Precambrian Res 78:125–138

    Google Scholar 

  • Byerly GR, Lowe DR, Wooden JL, Xie X (2002) An archaean impact layer from the Pilbara and Kaapvaal Cratons. Science 297:1325–1327

    Article  Google Scholar 

  • Chadwick B, Claeys P, Simonson BM (2000) New evidence for a large Palaeoproterozoic impact Spherules in a dolomite layer in the Ketilidian orogen South Greenland. J Geol Soc Lond 158:331–340

    Article  Google Scholar 

  • Chou CL (1978) Fractionation of siderophile elements in the Earth’s upper mantle. In: Proc Lunar Planet Sci Conf 9th. pp 219–230

    Google Scholar 

  • Garde AA, McDonald I, Dyck B, Keulen N (2012) Searching for giant ancient impact structures on Earth: the Meso-Archaean Maniitsoq structure, West Greenland. Earth Planet Sci Lett 2012:337–338

    Google Scholar 

  • Glass BP, Burns CA (1988) Microkrystites: a new term for impact-produced glassy spherules containing primary crystallites. Proc Lunar Planet Sci Conf XVIII:455–458

    Google Scholar 

  • Glikson AY (2004) Early Precambrian asteroid impact-triggered tsunami: excavated seabed debris flows exotic boulders and turbulence features associated with 3.47–2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Astrobiology 4:1–32

    Article  Google Scholar 

  • Glikson AY (2006) Asteroid impact ejecta units overlain by iron rich sediments in 3.5–2.4 Ga 507 terrains Pilbara and Kaapvaal Cratons: accidental or cause–effect relationships? Earth Planet Sci Lett 246:149–160

    Article  Google Scholar 

  • Glikson AY (2007) Siderophile element patterns, PGE nuggets and vapor condensation effects in Ni-rich quench chromite-bearing microkrystite spherules, 3.24 Ga S3 impact unit, Barberton greenstone belt, Kaapvaal Craton, South Africa. Earth Planet Sci Lett 253:1–16

    Article  Google Scholar 

  • Glikson AY, Allen C (2004) Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley Basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic earth. Earth Planet Sci Lett 20:247–264

    Article  Google Scholar 

  • Glikson AY, Vickers J (2006) The 3.26–3.24 Ga Barberton asteroid impact cluster: tests of tectonic and magmatic consequences, Pilbara Craton, Western Australia. Earth Planet Sci Lett 241:11–20

    Article  Google Scholar 

  • Glikson AY, Vickers J (2010) Asteroid impact connections of crustal evolution. Aust J Earth Sci 57:79–95

    Article  Google Scholar 

  • Glikson AY, Allen C, Vickers J (2004) Multiple 3.47-Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Earth Planet Sci Lett 221:383–396

    Article  Google Scholar 

  • Glikson AY, Hickman AH, Evans NJ, Kirkland CI, Jung-WP RR, Romano S (2016) A new 3.46 Ga asteroid impact ejecta unit at Marble Bar, Pilbara Craton, Western Australia: a petrological, microprobe and laser ablation ICPMS study. Precamb Res 279:103–122

    Article  Google Scholar 

  • Goderis S, Tagle R, Smit J, Montanari A, Vanhaecke F, Erzingerf J, Claeys PH (2013) Reevaluation of siderophile element abundances and ratios across the Cretaceous–Paleogene (K–Pg) boundary: Implications for the nature of the projectile. Geochim Cosmochim Acta 120:417–446

    Article  Google Scholar 

  • Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball Earth or aftermath of the Acraman impact? Geology (5):459–462

    Google Scholar 

  • Hassler SW (1993) Depositional history of the Main Tuff Interval of the Wittenoom Formation, late Archaean-early Proterozoic Hamersley Group, Western Australia. Precambrian Res 60:337–359

    Article  Google Scholar 

  • Hassler SW, Simonson BM (2001) The sedimentary record of extraterrestrial impacts in deep shelf environments evidence from the early Precambrian. J Geol 109:1–19

    Article  Google Scholar 

  • Hassler SW, Robey HF, Simonson BM (2000) Bedforms produced by impact-generated tsunami, 2.6 Ga Hamersley basin, Western Australia. Sediment Geol 135:283–294

    Article  Google Scholar 

  • Hassler SW, Simonson BM, Sumner DY, Bodin L (2011) Paraburdoo spherule layer, Hamersley Basin, Western Australia: distal ejecta from a fourth large impact near the Archaean- Proterozoic boundary. Geology 39:307–310

    Article  Google Scholar 

  • Hickman AH (1983) Geology of the Pilbara Block and its environs, West Australia geological survey Bulletin 127. Geol Surv W Aust, Perth, 268 pp

    Google Scholar 

  • Hickman AH (2012) Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. Island Arc 21:1–31

    Article  Google Scholar 

  • Hill AC, Grey K, Gostin VA, Webster LJ (2004) New records of late neoproterozoic Acraman ejecta in the officer basin. Aust J Earth Sci 51:47–51

    Article  Google Scholar 

  • Hurst J, Krapez B, Hawke P (2013) Stratigraphy of the Marra Mamba iron formation within the Chichester Range and its implications for iron ore genesis at Roy Hill – evidence from deep diamond drill holes within the East Fortescue Valley. Iron Ore, Australian Institute of Mining Metal paper 95

    Google Scholar 

  • Keays R, Schaefer B, Wallace M, Lambert D (2004) The Acraman impact event horizon: elative contributions of meteoritic, diagenetic and host rock Cu and PGE from Re-Os Isotopes, 17th Australian Geological Convention, Hobart, Tasmania 8–13th Feb 2004

    Google Scholar 

  • Kröner A, Byerly GR, Lowe DR (1991a) Chronology of early Archean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single grain zircon evaporation. Earth Planet Sci Lett 103:41–54

    Article  Google Scholar 

  • Kröner A, Wendt JI, Tegtmeyer AR, Milisenda C, Compston W (1991b) Geochronology of the Ancient Gneiss Complex, Swaziland, and implications for crustal evolution. In: Ashwal LD (ed) Two cratons and an orogen – excursion guidebook and review articles for a field workshop through selected Archaean terrains of Swaziland, South Africa, and Zimbabwe, IGCP project 280. Department of Geology, University of the Witwatersrand, Johannesburg, pp 8–31

    Google Scholar 

  • Kyte FT (2002) Tracers of extraterrestrial components in sediments and inferences for Earth’s accretion history. Geol Soc Am Spec Pap 356:21–38

    Google Scholar 

  • Kyte FT, Zhou L, Lowe DR (1992) Noble metal abundances in an early Archaean impact deposit. Geochim Cosmochim Acta 56:1365–1372

    Article  Google Scholar 

  • Kyte FT, Shukolyukov A, Lugmair GW, Lowe DR, Byerly GR (2003) Early Archaean spherule beds: chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology 31:283–286

    Article  Google Scholar 

  • LaBerge GL (1966) Altered pyroclastic rocks in iron formation in the Hamersley Range, Western Australia. Econ Geol 61:147–161

    Article  Google Scholar 

  • Lowe DR, Byerly GR (1986) Early Archaean silicate spherules of probable impact origin, South Africa and Western Australia. Geology 14:83–86

    Article  Google Scholar 

  • Lowe DR, Byerly GR (2010) Did the LHB end not with a bang but with a whimper? 41st lunar planet science conference 2563pdf

    Google Scholar 

  • Lowe DR, Byerly GR, Asaro F, Kyte FJ (1989) Geological and geochemical record of 3400 million year old terrestrial meteorite impacts. Science 245:959–962

    Article  Google Scholar 

  • Lowe DR, Byerly GR, Kyte FT, Shukolyukov A, Asaro F, Krull A (2003) Characteristics, origin, and implications of Archaean impact-produced spherule beds, 3.47–3.22 Ga, in the Barberton Greenstone Belt, South Africa: keys to the role of large impacts on the evolution of the early Earth. Astrobiology 3:7–48

    Article  Google Scholar 

  • McDonough WE, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350:494–497

    Article  Google Scholar 

  • Nelson DR (1999) Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1998. Western Australia Geological Survey Record 1999/2

    Google Scholar 

  • O’Keefe JD, Aherns TJ (1982) Interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere. Geol Soc Am Spec Pap 190:103–120

    Google Scholar 

  • Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy volatile production and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophys Res 102:21645–21664

    Article  Google Scholar 

  • Rasmussen B, Koeberl C (2004) Iridium anomalies and shocked quartz in a Late Archean spherule layer from the Pilbara Craton: new evidence for a major asteroid impact at 2.63 Ga. Geology 32:1029–1032

    Article  Google Scholar 

  • Rasmussen B, Blake TS, Fletcher IR (2005) U-Pb zircon age constraints on the Hamersley spherule beds: evidence for a single 2.63 Ga Jeerinah-Carawine impact ejecta layer. Geology 33:725–728

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill, New York

    Google Scholar 

  • Shukolyukov A, Kyte FT, Lugmair GW, Lowe DR, Byerly GR (2000) The oldest impact deposits on Earth. In: Koeberl C, Gilmour I (eds) Lecture notes in Earth science 92: impacts and the early Earth. Springer, Berlin, pp 99–116

    Google Scholar 

  • Simonson BM (1992) Geological evidence for an early Precambrian microtektite strewn field in the Hamersley Basin of Western Australia. Geol Soc Am Bull 104:829–839

    Article  Google Scholar 

  • Simonson BM, Glass BP (2004) Spherule layers – records of ancient impacts. Annu Rev Earth Planet Sci 32:329–361

    Article  Google Scholar 

  • Simonson BM, Hassler SW (1997) Revised correlations in the early Precambrian Hamersley Basin based on a horizon of re-sedimented impact spherules. Aust J Earth Sci 44:37–48

    Article  Google Scholar 

  • Simonson BM, Davies D, Wallace M, Reeves S, Hassler SW (1998) Iridium anomaly but no shocked quartz from Late Archaean microkrystite layer: oceanic impact ejecta? Geology 26:195–198

    Article  Google Scholar 

  • Simonson BM, Davies D, Hassler SW (2000a) Discovery of a layer of probable impact melt spherules in the late Archaean Jeerinah Formation, Fortescue Group, Western Australia. Aust J Earth Sci 47:315–325

    Article  Google Scholar 

  • Simonson BM, Hornstein M, Hassler SW (2000b) Particles in late Archean Carawine Dolomite, Western Australia, resemble Muong Nong-type tektites. In: Gilmour I, Koeberl C (eds) Impacts and the early earth. Springer, Berlin, pp 181–214

    Chapter  Google Scholar 

  • Simonson BM, Cardiff M, Schubel KA (2001) New evidence that a spherule layer in the late Archaean Jeerinah Formation of Western Australia was produced by a major impact. In: 32nd lunar planetary science conference abstracts, lunar and planetary institute contribution 1080, Huston

    Google Scholar 

  • Simonson BM, McDonald I, Shukolyukov A, Koeberl C, Reimold WU, Lugmair GW (2009a) Geochemistry of 2.63–2.49 Ga impact spherule layers and implications for stratigraphic correlations and impact processes. Precambrian Res 175:51–76

    Article  Google Scholar 

  • Simonson BM, Sumner DY, Beukes NJ, Johnson S, Gutzmerd J (2009b) Correlating multiple Neoarchean–Paleoproterozoic impact spherule layers between South Africa and Western Australia. Precambrian Res 169:100–111. Elsevier with permission. http://www.sciencedirect.com/science/article/pii/S0301926808002635

  • Simonson BM, Hassler SW, Beukes NJ, Sumner DY (2010) Large impacts around the Archaean-Proterozoic boundary–an update. 41st Lunar Planet Sci Conf, 2386.pdf

    Google Scholar 

  • Thorne AM, Trendall AM (2001) Geology of the Fortescue Group, Pilbara Craton, Western Australia. Geol Surv Bull 144:249p

    Google Scholar 

  • Trendall AF, Blockley JG (1970) The iron formations of the Precambrian Hamersley group, Western Australia. Geol Surv West Aust Bull 119:365 pp

    Google Scholar 

  • Trendall AF, Nelson DR, deLaeter JR, Hassler SW (1998) Precise zircon U-Pb ages from the Marra Mamba iron formation and wittenoom formation, Hamersley group, Western Australia. Aust J Earth Sci 45:137–142

    Article  Google Scholar 

  • Trendall AF, Compston W, Nelson DR, De Laeter JR, Bennett VC (2004) SHRIMP zircon ages constraining the depositional chronology of the Hamersley group, Western Australia. Aust J Earth Sci 51:621–644

    Article  Google Scholar 

  • Van Kranendonk MJ (2000) Geology of the North Shaw 1:100,000 sheet, Western Australia Geological Survey 1:100,000 series explanatory notes. Geological Survey of Western Australia, Perth, 89 pp

    Google Scholar 

  • Van Kranendonk MJ, Morant P (1998) Revised Archaean stratigraphy of the North Shaw 1:100 000 sheet, Pilbara Craton. Geol Surv West Aust Ann Rev 1997–1998:55–62

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Nelson D (2002) Geology and tectonic evolution of the Archaean North Pilbara Terrain, Pilbara Craton, Western Australia. Econ Geol 97:695–732

    Google Scholar 

  • Vearncombe S, Vearncombe JR, Barley ME (1998) Fault and stratigraphic controls on volcanogenic massive sulphide deposits in the Strelley Belt, Pilbara Craton, Western Australia. Precambrian Res 88:67–82

    Article  Google Scholar 

  • Wallace MW, Gostin VA, Keays RR (1990) Spherules and shard-like clasts from the late Proterozoic Acraman impact ejecta horizon, South Australia. Meteoritics 25:161–165

    Article  Google Scholar 

  • Wallace MW, Gostin VA, Keays RR (1996) Sedimentology of the Neoproterozoic Acraman impact-ejecta horizon, South Australia. AGSO J Aust Geol Geophys 16:443–451

    Google Scholar 

  • Williams GE (1986) The Acraman impact structure; source of ejecta in late Precambrian shales, South Australia. Science 233:200–203

    Article  Google Scholar 

  • Williams GE, Gostin VA (2005) The Acraman – Bunyeroo impact event (Ediacaran), South Australia, and environmental consequences: 25 years on. Aust J Earth Sci 52:607–620

    Article  Google Scholar 

  • Williams GE, Gostin VA (2010) Geomorphology of the Acraman impact structure, Gawler Ranges, South Australia. Cad Lab Xeol Laxe 35:209–220

    Google Scholar 

  • Williams GE, Schmidt PW (2015) Low paleolatitude for the late Cryogenian interglacial succession, South Australia: paleomagnetism of the Angepena Formation, Adelaide Geosyncline. Aust J Earth Sci 62:243–253

    Article  Google Scholar 

  • Williams GE, Wallace MW (2003) The Acraman asteroid impact, South Australia: magnitude and implications for the late Vendian environment. J Geol Soc Lond 160:545–554

    Article  Google Scholar 

  • Woodhead JD, Hergt JM, Simonson BM (1998) Isotopic dating of an Archaean bolide impact horizon, Hamersley Basin, Western Australia. Geology 26:47–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glikson, A.Y., Pirajno, F. (2018). Australian Asteroid Ejecta/Fallout Units. In: Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia. Modern Approaches in Solid Earth Sciences, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-74545-9_2

Download citation

Publish with us

Policies and ethics