Farmers’ Acreage Responses to the Expansion of the Sugarcane Ethanol Industry: The Case of Goiás and Mato Grosso Do Sul, Brazil

  • Gabriel Granco
  • Marcellus Caldas
  • Allen Featherstone
  • Ana Cláudia Sant’Anna
  • Jason Bergtold


From 2005 to 2012 sugarcane planted area increased by 54% in Brazil, reaching 9 million ha. This expansion was stronger in the Brazilian Cerrado, especially in the states of Goiás and Mato Grosso do Sul which are the new frontier of sugarcane production. The rapid expansion of sugarcane production in Brazil has the potential to reorganize the agricultural production landscape. Previous studies that examined the expansion trend and production system at a larger scale found evidence for the transition to a sugarcane producing region. However, little is known on how farmers decide which agricultural production to pursue and which land use to replace in the new frontier of sugarcane production. The goal of this chapter is to analyze farmers’ acreage response during the proliferation of the sugarcane industry into the new production frontier. More specifically, we estimate a partial adjustment model to examine farmers’ decisions toward sugarcane production in the states of Goiás and Mato Grosso do Sul. We estimate acreage response at county level using a partial adjustment framework. Estimates found that price of cattle has the largest cross-price elasticity with sugarcane acreage. In addition, the results suggest that acreage of sugarcane and soybean double-crop are positively correlated.



The National Science Foundation supported this work through the grant [NSF BCS 1227451 – “Collaborative Research: Land Change in the Cerrado: Ethanol and Sugar Cane Expansion at the Farm and Industry Scale”]. The authors thank the collaboration of Kansas Applied Remote Sensing Program, especially Jude Kastens, Christopher Bishop and J. Christopher Brown. The authors also thank the comments received at the American Association of Geographers and at the Conference of Latin Americanist Geographers meetings. We thank the anonymous reviewers for their helpful comments.


  1. Adami M, Rudorff BFT, Freitas RM, Aguiar DA, Sugawara LM, Mello MP (2012) Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil. Sustainability 4(12):574–585. CrossRefGoogle Scholar
  2. Aguiar DA, Rudorff BFT, Silva WF, Adami M, Mello MP (2011) Remote sensing images in support of environmental protocol: monitoring the sugarcane harvest in São Paulo state, Brazil. Remote Sens 3(12):2682–2703. CrossRefGoogle Scholar
  3. Alkimim A, Sparovek G, Clarke KC (2015) Converting Brazil’s pastures to cropland: an alternative way to meet sugarcane demand and to spare forestlands. Appl Geogr 62:75–84. CrossRefGoogle Scholar
  4. Arvor D, Meirelles M, Dubreuil V, Bégué A, Shimabukuro YE (2012) Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite-derived indices. Appl Geogr 32(2):702–713. CrossRefGoogle Scholar
  5. Barretto AGOP, Berndes G, Sparovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period. Glob Chang Biol 19(6):1804–1815. CrossRefGoogle Scholar
  6. Bergtold JS, Caldas MM, Sant’anna AC, Granco G, Rickenbrode V (2017) Indirect land use change from ethanol production: the case of sugarcane expansion at the farm level on the Brazilian Cerrado. J Land Use Sci:1–15.
  7. Bergtold JS, Fewell J, Williams J (2014) Farmers’ willingness to produce alternative cellulosic biofuel Feedstocks under contract in Kansas using stated choice experiments. Bioenergy Res 7(3):876–884. CrossRefGoogle Scholar
  8. Brannstrom C, Filippi AM (2008) Remote classification of Cerrado (savanna) and agricultural land covers in northeastern Brazil. Geocarto Int 23(2):109–134. CrossRefGoogle Scholar
  9. Brannstrom C, Jepson W, Filippi AM, Redo D, Xu Z, Ganesh S (2008) Land change in the Brazilian savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy. Land Use Policy 25(4):579–595. CrossRefGoogle Scholar
  10. Brazil M (2015) Mapeamento do Uso e Cobertura do Cerrado: Projeto Terra Class Cerrado 2013. Ministério do Meio Ambiente (MMA), Brasília, p 67Google Scholar
  11. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. CrossRefGoogle Scholar
  12. Brown JC, Kastens JH, Coutinho AC, Victoria D d C, Bishop CR (2013) Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens Environ 130:39–50. CrossRefGoogle Scholar
  13. Brown J, Jepson W, Kastens J, Wardlow B, Lomas J, Price K (2007) Multitemporal, moderate-spatial-resolution remote sensing of modern agricultural production and land modification in the Brazilian Amazon. GI Sci Remote Sensing 44(2):117–148. CrossRefGoogle Scholar
  14. Bustamante MC, Nobre C, Smeraldi R, Aguiar AD, Barioni L, Ferreira L et al (2012) Estimating greenhouse gas emissions from cattle raising in Brazil. Clim Chang 115(3–4):559–577. CrossRefGoogle Scholar
  15. Caldas MM, Bergtold JS, Peterson JM, Graves RW, Earnhart D, Gong S et al (2014) Factors affecting farmers’ willingness to grow alternative biofuel feedstocks across Kansas. Biomass Bioenergy 66(0):223–231. CrossRefGoogle Scholar
  16. Caldas MM, Granco G, Bishop C et al (2017) Effects of sugarcane ethanol expansion in the Brazilian cerrado. In: Qin Z, Mishra U, Hastings A (eds) Bioenergy and land use change. John Wiley & Sons, Inc., pp 39–51CrossRefGoogle Scholar
  17. Caldas MM, Sanderson MR, Mather M, Daniels MD, Bergtold JS, Aistrup J et al (2015) Opinion: Endogenizing culture in sustainability science research and policy. Proc Natl Acad Sci 112(27):8157–8159. CrossRefGoogle Scholar
  18. Capaz RS, Carvalho VSB, Nogueira LAH (2013) Impact of mechanization and previous burning reduction on GHG emissions of sugarcane harvesting operations in Brazil. Special Issue on Advances in sustainable biofuel production and use - XIX International Symposium on Alcohol Fuels - ISAF 102(0):220–228. CrossRefGoogle Scholar
  19. Carpentier A, Letort E (2014) Multicrop production models with multinomial Logit acreage shares. Environ Resour Econ 59(4):537–559. CrossRefGoogle Scholar
  20. Carvalho FMV, De Marco Júnior P, Ferreira LG (2009) The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of Central Brazil. Biol Conserv 142(7):1392–1403. CrossRefGoogle Scholar
  21. Clark ML, Aide TM, Grau HR, Riner G (2010) A scalable approach to mapping annual land cover at 250 m using MODIS time series data: a case study in the dry Chaco ecoregion of South America. Remote Sens Environ 114(11):2816–2832. CrossRefGoogle Scholar
  22. Coelho ST, Goldemberg J, Lucon O, Guardabassi P (2006) Brazilian sugarcane ethanol: lessons learned. Energy Sustain Dev 10(2):26–39. CrossRefGoogle Scholar
  23. Cohn AS, Mosnier A, Havlík P, Valin H, Herrero M, Schmid E et al (2014) Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc Natl Acad Sci 111(20):7236–7241. CrossRefGoogle Scholar
  24. de CONAB CNA (2016) Safras: Séries históricas - Cana-de-Açúcar.
  25. Egeskog A, Barretto A, Berndes G, Freitas F, Holmén M, Sparovek G, Torén J (2016) Actions and opinions of Brazilian farmers who shift to sugarcane—an interview-based assessment with discussion of implications for land-use change. Land Use Policy 57:594–604. CrossRefGoogle Scholar
  26. Ferreira ME, Ferreira LG, Latrubesse EM, Miziara F (2016) Considerations about the land use and conversion trends in the savanna environments of Central Brazil under a geomorphological perspective. J Land Use Sci 11(1):33–47. CrossRefGoogle Scholar
  27. Ferreira ME, Ferreira LG, Miziara F, Soares-Filho BS (2013) Modeling landscape dynamics in the central Brazilian savanna biome: future scenarios and perspectives for conservation. J Land Use Sci 8(4):403–421. CrossRefGoogle Scholar
  28. Ferreira NC, Ferreira LG, Huete AR, Ferreira ME (2007) An operational deforestation mapping system using MODIS data and spatial context analysis. Int J Remote Sens 28(1):47–62. CrossRefGoogle Scholar
  29. Ferreira Filho JB d S, Horridge M (2014) Ethanol expansion and indirect land use change in Brazil. Land Use Policy 36:595–604. CrossRefGoogle Scholar
  30. Gil J, Siebold M, Berger T (2015) Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil. Agric Ecosyst Environ 199:394–406. CrossRefGoogle Scholar
  31. Goldemberg J (2006) The ethanol program in Brazil. Environ Res Lett 1(1):14008. CrossRefGoogle Scholar
  32. Goldemberg J, Mello FFC, Cerri CEP, Davies CA, Cerri CC (2014) Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy 69(0):14–18. CrossRefGoogle Scholar
  33. Granco G (2017) Land change dynamics in the Brazilian Cerrado the interaction of biofuels, markets, and biodiversity. Kansas State University, Manhattan, KanGoogle Scholar
  34. Granco G, Caldas MM, Bergtold JS, Sant’Anna AC (2017) Exploring the policy and social factors fueling the expansion and shift of sugarcane production in the Brazilian Cerrado. Geo J 82(1):63–80. CrossRefGoogle Scholar
  35. Granco G, Sant’Anna AC, Bergtold JS, Caldas MM (2018) Factors influencing ethanol mill location in a new sugarcane producing region in Brazil. Biomass and Bioenergy 111:125–133. CrossRefGoogle Scholar
  36. Haile MG, Kalkuhl M, von Braun J (2016) Worldwide acreage and yield response to international price change and volatility: a dynamic panel data analysis for wheat, Rice, corn, and soybeans. Am J Agric Econ 98(1):172–190. CrossRefGoogle Scholar
  37. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A et al (2013) High-resolution global maps of 21st-century Forest cover change. Science 342(6160):850–853. CrossRefGoogle Scholar
  38. Hausman C (2012) Biofuels and land use change: sugarcane and soybean acreage response in Brazil. Environ Resour Econ 51(2):163–187. CrossRefGoogle Scholar
  39. Hendricks NP, Smith A, Sumner DA (2014) Crop supply dynamics and the illusion of partial adjustment. Am J Agric Econ 96(5):1469–1491. CrossRefGoogle Scholar
  40. Hennessy DA (2006) On monoculture and the structure of crop rotations. Am J Agric Econ 88(4):900–914. CrossRefGoogle Scholar
  41. Horta Nogueira LA, Moreira JR, Schuchardt U, Goldemberg J (2013) The rationality of biofuels. Energy Policy 61(0):595–598. CrossRefGoogle Scholar
  42. IEA - Instituto de Economia Agrícola (2014) Protocolo Agroambiental do Setor Sucroenérgetico Paulista : Dados consolidados das safras 2007/2008 a 2013/2014.
  43. Instituto Brasileiro de Geografia e Estatística (2006) Censo agropecuário 2006: resultados preliminares. IBGEGoogle Scholar
  44. Instituto Brasileiro de Geografia e Estatística, I (2016a). Sistema IBGE de Recuperação Automática - SIDRA: Produção Agrícola Municipal.
  45. Instituto Brasileiro de Geografia e Estatística, I (2016b). Sistema IBGE de Recuperação Automática - SIDRA: Pesquisa Pecuaria Municipal.
  46. Irwin EG, Geoghegan J (2001) Theory, data, methods: developing spatially explicit economic models of land use change. Agric Ecosyst Environ 85(1–3):7–23. CrossRefGoogle Scholar
  47. Jepson W (2006) Private agricultural colonization on a Brazilian frontier, 1970–1980. J Hist Geogr 32(4):839–863. CrossRefGoogle Scholar
  48. Jepson W, Brannstrom C, Filippi A (2010) Access regimes and regional land change in the Brazilian Cerrado, 1972–2002. Ann Assoc Am Geogr 100(1):87–111. CrossRefGoogle Scholar
  49. Kastens JH, Brown JC, Coutinho AC, Bishop CR, Esquerdo JCDM (2017) Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS One 12(4):e0176168. CrossRefGoogle Scholar
  50. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19(3):707–713. CrossRefGoogle Scholar
  51. Leal MRLV, Horta Nogueira LA, Cortez LAB (2013) Land demand for ethanol production. Special Issue on Advances in sustainable biofuel production and use - XIX International Symposium on Alcohol Fuels - ISAF 102(0):266–271. CrossRefGoogle Scholar
  52. Mann ML, Kaufmann RK, Bauer DM, Gopal S, Nomack M, Womack JY et al (2014) Pasture conversion and competitive cattle rents in the Amazon. Ecol Econ 97(0):182–190. CrossRefGoogle Scholar
  53. Manzatto CV, Assad ED, Bacca JFM, Zaroni MJ, Pereira SEM (2009) Zoneamento agroecológico da cana-de-açúcar. Documentos, Rio de JaneiroGoogle Scholar
  54. Martha GB, Alves E, Contini E (2012) Land-saving approaches and beef production growth in Brazil. Agric Syst 110(0):173–177. CrossRefGoogle Scholar
  55. McKee B, Sant’Anna AC, Bergtold JS et al (2017) TRUST ME! Examining the contractual relationships between sugarcane producers and mills in the Cerrado. Rev Extensão e Estud Rurais 6:98. doi: CrossRefGoogle Scholar
  56. Ministério do Meio Ambiente (2008) Projeto de Conservação e Utilização Sustentável da Diversidade Biológica Brasileira - Probio I.
  57. Ministério do Meio Ambiente (2014) PPCerrado – Plano de Ação para prevenção e controle do desmatamento e das queimadas no Cerrado:2a fase (2014-2015). MMA, Brasilia. Accessed 19 September 2016Google Scholar
  58. Müller H, Rufin P, Griffiths P, Barros Siqueira AJ, Hostert P (2015) Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens Environ 156:490–499. CrossRefGoogle Scholar
  59. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858. CrossRefGoogle Scholar
  60. Neves MF, Waack RS, Marino MK (1998) Sistema agroindustrial da cana-de-açúcar: caracterização das transações entre empresas de insumos, produtores de cana e usinas. In Congresso Da Sociedade Brasileira De Economia E Sociologia Rural--Sober (Vol. 36)Google Scholar
  61. Newberry D (2014) Why are there cattle in the conservation area? Social barriers to biofuel governance in Brazil. Geoforum 54(0):306–314. CrossRefGoogle Scholar
  62. Peterson JM, Caldas MM, Bergtold JS, Sturm BS, Graves RW, Earnhart D et al (2014) Economic linkages to changing landscapes. Environ Manag 53(1):55–66. CrossRefGoogle Scholar
  63. Rada N (2013) Assessing Brazil’s Cerrado agricultural miracle. Food Policy 38:146–155. CrossRefGoogle Scholar
  64. Rodrigues DMT, Miziara F (2008) Expansão da fronteira agrícola: a intensificação da pecuária bovina no Estado de Goiás. Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics) 38(1):14–20. Google Scholar
  65. Rudorff BFT, de Aguiar DA, da Silva WF, Sugawara LM, Adami M, Moreira MA (2010) Studies on the rapid expansion of sugarcane for ethanol production in São Paulo state (Brazil) using Landsat data. Remote Sens 2(4):1057–1076. CrossRefGoogle Scholar
  66. Saddiq M, Fayaz M, Hussain Z, Shahab M, Ullah I (2014) Acreage response of sugarcane to price and non price factors in Khyber Pakhtunkhwa. Inter J Food Agr Econ 2(3):121–128. Google Scholar
  67. Sano EE, Rosa R, Brito JLS, Ferreira LG (2008) Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesq Agrop Brasileira 43(1):153–156. CrossRefGoogle Scholar
  68. Sano EE, Rosa R, Brito JLS, Ferreira LG (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166(1–4):113–124. CrossRefGoogle Scholar
  69. Sant’Anna AC, Granco G, Bergtold J, Caldas MM, Xia T, Masi P et al (2016a) Os desafios da expansão da cana-de-açúcar: a percepção de produtores e arrendatários de terras em Goiás e Mato Grosso do Sul. In: dos Santos GR (ed) Quarenta anos de etanol em larga escala no Brasil: desafios, crises e perspectivas. IPEA, Brasilia, p 315. Google Scholar
  70. Sant’Anna AC, Shanoyan A, Bergtold JS, Caldas MM, Granco G (2016b) Ethanol and sugarcane expansion in Brazil: what is fueling the ethanol industry? Inter Food Agr Manag Rev 19(4):163–182. CrossRefGoogle Scholar
  71. Secchi S, Kurkalova L, Gassman PW, Hart C (2011) Land use change in a biofuels hotspot: the case of Iowa, USA. Biomass Bioenergy 35(6):2391–2400. CrossRefGoogle Scholar
  72. Shikida PFA (2013) Expansão canavieira no Centro-Oeste: limites e potencialidades. Revista de Política Agrícola 22(2):122–137. Accessed 1 June 2017Google Scholar
  73. Silva AA, Miziara F (2011) Avanço do setor sucroalcooleiro e expansão da fronteira agrícola em Goiás. Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics) 41(3). v41i3. 11054
  74. Sparovek G, Berndes G, Egeskog A, Mazzaro de Freitas FL, Gustafsson S, Hansson J (2007) Sugarcane ethanol production in Brazil: an expansion model sensitive to socioeconomic and environmental concerns. Biofuels Bioproducts & Biorefining-Biofpr 1(4):270–282. CrossRefGoogle Scholar
  75. Strassburg BBN, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R, Loyola R et al (2017) Moment of truth for the Cerrado hotspot. Nature Ecology Evolut 1(4):99. CrossRefGoogle Scholar
  76. Strassburg BBN, Latawiec AE, Barioni LG, Nobre CA, da Silva VP, Valentim JF et al (2014) When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob Environ Chang 28(0):84–97. CrossRefGoogle Scholar
  77. Van den Wall Bake JD, Junginger M, Faaij A, Poot T, Walter A (2009) Explaining the experience curve: cost reductions of Brazilian ethanol from sugarcane. Biomass Bioenergy 33(4):644–658. CrossRefGoogle Scholar
  78. Walker R, Browder J, Arima E, Simmons C, Pereira R, Caldas M et al (2009) Ranching and the new global range: Amazônia in the 21st century. Geoforum 40(5):732–745. CrossRefGoogle Scholar
  79. Walter A, Galdos MV, Scarpare FV, Leal MRLV, Seabra JEA, da Cunha MP et al (2014) Brazilian sugarcane ethanol: developments so far and challenges for the future. Wiley Interdisciplinary Rev: Energy and Environ 3(1):70–92. CrossRefGoogle Scholar
  80. Wardlow BD, Egbert SL (2008) Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. central Great Plains. Remote Sens Environ 112(3):1096–1116. CrossRefGoogle Scholar
  81. Wardlow BD, Kastens JH, Egbert SL (2006) Using USDA crop progress data for the evaluation of Greenup onset date calculated from MODIS 250-meter data. Photogramm Eng Remote Sens 72(11):1225–1234CrossRefGoogle Scholar
  82. Wardlow B, Egbert S, Kastens J (2007) Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. central Great Plains. Remote Sens Environ 108(3):290–310. CrossRefGoogle Scholar
  83. Wu J, Brorsen BW (1995) The impact of government programs and land characteristics on cropping patterns. Canadian J Agr Econ/Revue canadienne d’agroeconomie 43(1):87–104. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gabriel Granco
    • 1
  • Marcellus Caldas
    • 2
  • Allen Featherstone
    • 3
  • Ana Cláudia Sant’Anna
    • 4
  • Jason Bergtold
    • 5
  1. 1.Stroud Water Research CenterAvondaleUSA
  2. 2.The Ohio State University, Department of Agricultural, Environmental, and Development EconomicsColumbusUSA
  3. 3.The Ohio State University, Department of Agricultural, Environmental, and Development EconomicsColumbusUSA
  4. 4.The Ohio State University, Department of Agricultural, Environmental, and Development EconomicsColumbusUSA
  5. 5.The Ohio State University, Department of Agricultural, Environmental, and Development EconomicsColumbusUSA

Personalised recommendations