Advertisement

Big Data Analytics for Supply Chain Management

  • Mariam Moufaddal
  • Asmaa Benghabrit
  • Imane Bouhaddou
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)

Abstract

All our daily digital actions generate data at an alarming velocity, volume and variety. To extract meaningful value from big data, we need optimal processing power, analytics capabilities and skills. Nowadays, big data solutions are widely applied in different types of organizations. Such solutions bring multiple benefits in managing supply chains. The aim of this paper is to give an overview of big data analytic techniques used in supply chain management based on the latest version of the SCOR model.

Keywords

Big data Analytic techniques Supply chain Supply chain management SCOR model 

References

  1. 1.
    Martin, J., et al.: Big data in logistics a DHL perspective on how to move beyond the hype. DHL Customer Solutions & Innovation, pp. 1–30 (2013)Google Scholar
  2. 2.
    Kaisler, S., et al.: Big data: issues and challenges moving forward. In: 2013 46th Hawaii International Conference on System Sciences (HICSS), Wailea, Maui, HI, 7–10 January, pp. 995–1004. IEEE (2013)Google Scholar
  3. 3.
    Laney, D.: Meta group (now Gartner) (2001)Google Scholar
  4. 4.
    White paper - A Data Powered Future, Experian 2016Google Scholar
  5. 5.
    Swaminathan, S.: The effects of big data on the logistics industry: PROFIT ORACLE Technology Powered. Business Driven (2012). http://www.oracle.com/us/corporate/profit/archives/opinion/021512sswaminathan-1523937.html
  6. 6.
  7. 7.
    Chen, M., et al.: Big data: a survey. Mobile Netw. Appl. 19(2), 171–209 (2014)CrossRefGoogle Scholar
  8. 8.
    IDC: International Data Corporation (2012)Google Scholar
  9. 9.
  10. 10.
    Souza, G.C.: Supply chain analytics. Bus. Horiz. 57, 595–605 (2014)CrossRefGoogle Scholar
  11. 11.
    Stank, T.P., et al.: Supply chain collaboration and logistical service performance. J. Bus. Logist. 22(1), 29–48 (2001)CrossRefGoogle Scholar
  12. 12.
    Copacino, W.C.: Supply Chain Management: The Basics and Beyond. APICS Series on Resource Management, p. 5. St. Lucie Press, Boca Raton (1997)zbMATHGoogle Scholar
  13. 13.
    Stein, M., Voehl, F.: Macrologistics Management. St. Lucie Press, Boca Raton (1998)Google Scholar
  14. 14.
    Al Nuaimi, E., et al.: Application of big data to smart cities. J. Internet Serv. Appl. 6, 25 (2015)CrossRefGoogle Scholar
  15. 15.
    Hahn, G.J., et al.: A perspective on applications of in-memory analytics in supply chain management. Decis. Support Syst. 76, 45–52 (2015)CrossRefGoogle Scholar
  16. 16.
    Chae, B., Yang, C., et al.: The impact of advanced analytics and data accuracy on operational performance: a contingent resource based theory (RBT) perspective. Decis. Support Syst. 59, 119–126 (2014)CrossRefGoogle Scholar
  17. 17.
    Groves, W., et al.: Agent-assisted supply chain management: analysis and lessons learned. Decis. Support Syst. 57, 274–284 (2014)CrossRefGoogle Scholar
  18. 18.
    Duta, D., Bose, I.: Managing a big data project: the case of Ramco Cements Limited. Int. J. Prod. Econ. 165, 293–306 (2015)CrossRefGoogle Scholar
  19. 19.
    Zhong, R.Y., et al.: A big data approach for logistics trajectory discovery from RFID-enabled production data. Int. J. Prod. Econ. 165, 260–272 (2015)CrossRefGoogle Scholar
  20. 20.
    Kahn, K.B.: Solving the problems of new product forecasting. Bus. Horiz. 57, 607–615 (2014)CrossRefGoogle Scholar
  21. 21.
    Hazen, H.T., et al.: Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications. Int. J. Prod. Econ. 154, 72–80 (2014)CrossRefGoogle Scholar
  22. 22.
    Waller, M.A., Fawcett, S.E.: Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J. Bus. Logist. 34, 77–84 (2013)CrossRefGoogle Scholar
  23. 23.
    O’Dwyer, J., Renner, R.: The promise of advanced supply chain analytics. Supply Chain Manag. Rev. 15, 32–37 (2011)Google Scholar
  24. 24.
    Stadtler, H.: Supply chain management and advanced planning: basics, overview and challenges. Eur. J. Oper. Res. 163, 575–588 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Manyika, J., et al.: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute, New York City (2011)Google Scholar
  26. 26.
    Cheikhrouhou, N., et al.: A collaborative demand forecasting process with event-based fuzzy judgements. Comput. Ind. Eng. 61(2), 409–421 (2011)CrossRefGoogle Scholar
  27. 27.
    Li, B., Li, J., Li, W., Shirodkar, S.A.: Demand forecasting for production planning decision-making based on the new optimized fuzzy short time-series clustering. Prod. Plan. Control 23(9), 663–673 (2012)CrossRefGoogle Scholar
  28. 28.
    Cohen, J., et al.: MAD skills: new analysis practices for big data. J. VLDB Endow. 2(2), 1481–1492 (2009)CrossRefGoogle Scholar
  29. 29.
    Demirkan, H., et al.: Leveraging the capabilities of service-oriented decision support systems: putting analytics and big data in cloud. Decis. Support Syst. 55(1), 412–421 (2013)CrossRefGoogle Scholar
  30. 30.
    Sanders, N.R.: Big Data Driven Supply Chain Management: A Framework for Implementing Analytics and Turning Information into Intelligence. 1st edn. Pearson Education, Upper Saddle River (2014). 26 p. ISBN 10:0133801284Google Scholar
  31. 31.
    Goetschalckx, M., et al.: Strategic network design. In: Stadtler, H., Kilger, C. (eds.) Supply Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies, pp. 117–132. Springer, Berlin (2008)CrossRefGoogle Scholar
  32. 32.
    Dickersbach, J.T.: Supply Chain Management with APO: Structures, Modelling Approaches and Implementation of SAP SCM 2008, 3rd edn. Springer, Berlin (2009)CrossRefGoogle Scholar
  33. 33.
    Rey, T., Kordon, A., Wells, C.: Applied Data Mining for Forecasting Using SAS. SAS Institute, Cary (2012)Google Scholar
  34. 34.
    Downing, M., Chipulu, M., Ojiako, U., Kaparis, D.: Advanced inventory planning and forecasting solutions: a case study of the UKTLCS Chinook maintenance programme. Prod. Plan. Control 25(1), 73–90 (2014)CrossRefGoogle Scholar
  35. 35.
    Wei, C., Li, Y., Cai, X.: Robust optimal policies of production and inventory with uncertain returns and demand. Int. J. Prod. Econ. 134(2), 357–367 (2011)CrossRefGoogle Scholar
  36. 36.
    Ho, W., Xu, X., Dey, P.: Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur. J. Oper. Res. 202(1), 16–24 (2010)CrossRefzbMATHGoogle Scholar
  37. 37.
    Ekici, A.: An improved model for supplier selection under capacity constraint and multiple criteria. Int. J. Prod. Econ. 141(2), 574–581 (2013)CrossRefGoogle Scholar
  38. 38.
    Cisco: Building a collaboration architecture for a global supply chain (2013). Accessed 14 June 2013. http://www.cisco.com/en/US/solutions/collateral/ns340/ns858/c22-613680_sOview.html
  39. 39.
    Simchi-Levi, D., et al. (eds.) Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business Era. Kluwer Academic Publishers, Boston (2004)Google Scholar
  40. 40.
    Jain, S., Lindskog, E., Andersson, J., Johansson, B.: A hierarchical approach for evaluating energy trade-offs in supply chains. Int. J. Prod. Econ. 146(2), 411–422 (2013)CrossRefGoogle Scholar
  41. 41.
    Apte, A.U., Rendon, R.G., Salmeron, J.: An optimization approach to strategic sourcing: a case study of the United States Air Force. J. Purch. Supply Manag. 17(4), 222–230 (2011)CrossRefGoogle Scholar
  42. 42.
    Chae, B., et al.: The impact of advanced analytics and data accuracy on operational performance: a contingent resource based theory (RBT) perspective. Decis. Support Syst. 59, 119–126 (2014)CrossRefGoogle Scholar
  43. 43.
    Stroh, M.B.: What is Logistics. Logistics Network (2002). http://www.logisticsnetwork.net/articles/What%20is%20Logistics.pdf
  44. 44.
    Kwon, K., et al.: A real-time process management system using RFID data mining. Comput. Ind. 65, 721–732 (2014)CrossRefGoogle Scholar
  45. 45.
    Funaki, K.: State of the art survey of commercial software for supply chain design (2009). Accessed 18 June 2013. http://scl.gatech.edu/research/supply-chain/GTSCL_scdesign_software_survey.pdf
  46. 46.
    Paksoy, T., et al.: A multi-objective mixed-integer programming model for multi echelon supply chain network design and optimization. System Research and Information Technologies, METU (2009)Google Scholar
  47. 47.
    Tan, K.H., et al.: Harvesting big data to enhance supply chain innovation capabilities: an analytic infrastructure based on deduction graph. Int. J. Prod. Econ. 165, 223–233 (2015)CrossRefGoogle Scholar
  48. 48.
    Zighed, D.A., Rakotomalala, R.: Graphes d’induction. Hermes Science publications, Paris (2000)Google Scholar
  49. 49.
    Pinedo, M.: Scheduling Theory, Algorithms and Systems, 3rd edn. Springer, New York (2008)zbMATHGoogle Scholar
  50. 50.
    Campbell, G.: Overview of workforce scheduling software. Prod. Invent. Manag. J. 45(2), 7–22 (2009)Google Scholar
  51. 51.
    Burbidge, J.L.: A Production System Variable Connectance Model. Cranfield Institute of Technology, London (1984)Google Scholar
  52. 52.
    Lu, C., Wang, Y.: Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting. Int. J. Prod. Econ. 128(2), 603–661 (2010)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Beutel, A.L., et al.: Safety stock planning under causal demand forecasting. Int. J. Prod. Econ. 140(2), 637–639 (2012)CrossRefGoogle Scholar
  54. 54.
    IBM: White paper 2014, Big data and analytics in travel and transportation, beyond the hype: solutions that deliver big value (2014)Google Scholar
  55. 55.
    Tan, K.H., Platts, K.: Linking objectives to action plans: a decision support approach based on the connectance concept. Decis. Sci. 34(3), 569–593 (2003)CrossRefGoogle Scholar
  56. 56.
    Wang, G., et al.: Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int. J. Prod. Econ. 176, 98–110 (2016)CrossRefGoogle Scholar
  57. 57.
    Melo, M.T., et al.: Facility location and supply chain management: a review. Eur. J. Oper. Res. 196(2), 401–412 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Shachter, R.D.: Evaluating influence diagrams. Oper. Res. 34(6), 871–882 (1986)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Buzan, T.: Use Your Head. BBC/Ariel Books, London (1982)Google Scholar
  60. 60.
    Ayed, B., et al.: Big data analytics for logistics and transportation. In: 2015 4th IEEE International Conference on Advanced logistics and Transport (ICALT), pp. 311–316 (2015)Google Scholar
  61. 61.
    Shen, Y., Willems, S.P.: Strategic sourcing for the short-lifecycle products. Int. J. Prod. Econ. 139(2), 575–585 (2012)CrossRefGoogle Scholar
  62. 62.
    Feki, M., Boughzala, I., Wamba, S.F.: Big data analytics-enabled supply chain transformation: a literature review (2016)Google Scholar
  63. 63.
    Noyes, A., Godavarti, R., Titchener-Hooker, N., Coffman, J., Mukhopadhyay, T.: Quantitative high throughput analytics to support polysaccharide production process development. Vaccine 32(4), 2819–2828 (2014)CrossRefGoogle Scholar
  64. 64.
    Jodlbauer, H.: A time-continuous analytic production model for service level, work in process, lead time and utilization. Int. J. Prod. Res. 46(7), 1723–1744 (2008)CrossRefzbMATHGoogle Scholar
  65. 65.
    Lockamy III, A., McCormack, K.: Linking SCOR planning practices to supply chain performance, an explorative study. Int. J. Oper. Prod. Manag. 24(12), 1192–1218 (2004)CrossRefGoogle Scholar
  66. 66.
    Winston, W.L.: Operations Research: Applications and Algorithms, 7th edn. Duxbury Press, Belmont (2003). Chapter 19, Example 3zbMATHGoogle Scholar
  67. 67.
    Karakostas, G.: Faster approximation schemes for fractional multicommodity flow problems. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 166–173 (2002)Google Scholar
  68. 68.
    Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum cost flows. Math. Program. 78(2), 109–129 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.LM2I LaboratoryENSAM MeknesMeknesMorocco
  2. 2.LMAID LaboratoryENSMR RabatRabatMorocco

Personalised recommendations