On the Linear Essential Spectrum Operator

  • Hassan Outouzzalt
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)


This paper presents: Let A be a unital \(C^{*}\)-algebra of real rank zero and B be a unital semisimple complex Banach algebra. We characterize linear maps from A onto B that compress different essential spectral sets such as the (left, right) essential spectrum, the semi-Fredholm spectrum, and the Weyl spectrum. Essentially spectrally bounded linear mapping from A onto B are also characterized.


Fredholm elements Essential spectrum Essential spectral radius 


  1. 1.
    Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, New York (2004)zbMATHGoogle Scholar
  2. 2.
    Aupetit, B.: A Primer on Spectral Theory. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aupetit, B.: Spectrum-preserving linear map between Banach algebra or Jordan-Banach algebra. J. Lond. Math. Soc. 62(3), 917–924 (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Barnes, B.A., Murphy, G.J., Smyth, M.R.F., West, T.T.: Riesz and Fredholm Theory in Banach Algebra. Pitman, London (1982)zbMATHGoogle Scholar
  5. 5.
    Bendaoud, M., Bourhim, A., Sarih, M.: Linear maps preserving the essential spectral radius. Linear Algebra Appl. 428, 1041–1045 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bendaoud, M., Bourhim, A.: Essentially spectrally bounded linear maps. Proc. Amer. Math. soc. 137(10), 3329–3334 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bendaoud, M., Sarih, M.: Locally spectrally bounded linear maps. Math. Bohem 136(1), 81–89 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Brown, L.G., Pedersen, G.K.: \(C^{*}\)-algebras of rank real zero. J. Funct. Anal. 99, 131–149 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cui, J., Hou, J.: Linear maps between Banach algebras compressing certains spectral functions. Rocky Mt. J. Math. Soc. 34(2), 565–584 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Herstein, I.N.: Jordan homomorphisms. Trans. Amer. Math. Soc. 81, 331–341 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jacobson, N., Rickart, C.E.: Jordan homomorphism of rings. Trans. Amer. Math. Soc. 69, 479–502 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rowell, J.W.: Unilateral Fredholm theory and unilateral spectra. Proc. Roy. Irish. Acad. 84, 69–85 (1984)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Schmoger, C.: Atkinson theory and holomorphic functions in Banach algebras. Proc. Roy. Irish. Acad. 91, 113–127 (1991)MathSciNetGoogle Scholar
  14. 14.
    Kirchberg, E., Rørdam, M.: Non-simple purely infinite \(C^{*}\)-algebras. Amer. J. Math. 122, 637–666 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.LabSi, FSJES & FSAUniversity Ibn ZohrAgadirMorocco

Personalised recommendations