Advertisement

Learners’ Motivation Analysis in Serious Games

  • Othman Bakkali Yedri
  • Lotfi El Aachak
  • Amine Belahbib
  • Hassan Zili
  • Mohammed Bouhorma
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)

Abstract

Compared to traditional learning, serious games have a huge advantage in promoting learners motivation and positive feelings. Despite advantages and efforts invested by researchers to ensure the continuity of learning through serious games, many studies show that learners are able to abandon the experience in complete freedom, without achieving learning objectives. However, analyzing the motivational factors by maintaining a synergy between motivation and learning is the main key of success. In this paper, we will study in the first place similar works. Then we will present our motivational analysis approach based on a combination of several machine learning algorithms and learning analytics methods. Finally, a detailed discussion with the analysis of our obtained results will conclude the paper.

Keywords

Serious game Learning outcomes Game play Experience Adaptability Game based learning Service oriented architecture Motivation Data analysis Expectation Maximization 

References

  1. 1.
    Vermeulen, H., Gain, J.: Experimental methodology for evaluating learning in serious gamesGoogle Scholar
  2. 2.
    Abt, C.C.: Serious Games. University Press of America, Lanham (1987)Google Scholar
  3. 3.
    Heeren, B., Jeuring, J.: Feedback services for stepwise exercises. Sci. Comput. Program. 88, 110–129 (2014)CrossRefGoogle Scholar
  4. 4.
    Parsons, J., Taylor, L.: Improving student engagement. Curr. Issues Educ. 14(1), 1–32 (2011)Google Scholar
  5. 5.
    Bixler, B.: Motivation and its relationship to the design of educational games. NMC Clevel., Ohio, vol. 10, no. 07 (2006). AccessedGoogle Scholar
  6. 6.
    Kickmeier-Rust, M.D., Albert, D.: Educationally adaptative: balancing serious games. Int. J. Comput. Sci. Sport 11(1), 15 (2012)Google Scholar
  7. 7.
    Syufagi, M.A., Hariadi, M., Purnomo, M.H.: A motivation behavior classification based on multi objective optimization using learning vector quantization for serious games. Int. J. Comput. Appl. 57(14), 23–30 (2012)Google Scholar
  8. 8.
    Mortara, M., Catalano, C.E., Fiucci, G., Derntl, M.: Evaluating the effectiveness of serious games for cultural awareness: the icura user study. In: De Gloria, A. (ed.) GALA 2013. LNCS, vol. 8605, pp. 276–289. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12157-4_22 Google Scholar
  9. 9.
    Fenouillet, F., Kaplan, J., Yennek, N.: Serious games et motivation. In: 4eme Conference francophone sur les Environnements Informatiques pour l’Apprentissage Humain (EIAH 2009), vol. Actes de lAtelier Jeux Serieux: conception et usages (2009)Google Scholar
  10. 10.
    Fryer, L.K., Bovee, H.N.: Supporting students’ motivation for e-learning: teachers matter on and offline. Internet High. Educ. 30, 21–29 (2016)CrossRefGoogle Scholar
  11. 11.
    Harandi, S.R.: Effects of e-learning on students’ motivation. Procedia Soc. Behav. Sci. 181, 423–430 (2015)CrossRefGoogle Scholar
  12. 12.
    Leiker, A.M., Bruzi, A.T., Miller, M.W., Nelson, M., Wegman, R., Lohse, K.R.: The effects of autonomous difficulty selection on engagement, motivation, and learning in a motion-controlled video game task. Hum. Mov. Sci. 49, 326–335 (2016)CrossRefGoogle Scholar
  13. 13.
    Dewey, J.: Interest and Effort in Education. Riverside Press, Cambridge (1913)CrossRefGoogle Scholar
  14. 14.
    Hunicke, R., LeBlanc, M., Zubek, R.: MDA: a formal approach to game design and game research. In: Proceedings of the AAAI Workshop on Challenges in Game AI, vol. 4 (2004)Google Scholar
  15. 15.
    Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp. Educ. Psychol. 25(1), 54–67 (2000)CrossRefGoogle Scholar
  16. 16.
    Leiker, A.M., Miller, M., Brewer, L., Nelson, M., Siow, M., Lohse, K.: The relationship between engagement and neurophysiological measures of attention in motion-controlled video games: a randomized controlled trial. JMIR Serious Games 4(1), e4 (2016)CrossRefGoogle Scholar
  17. 17.
    O’Brien, H.L., Toms, E.G.: What is user engagement? a conceptual framework for defining user engagement with technology. J. Am. Soc. Inf. Sci. Technol. 59(6), 938–955 (2008)CrossRefGoogle Scholar
  18. 18.
    Boyle, E.A., Connolly, T.M., Hainey, T., Boyle, J.M.: Engagement in digital entertainment games: a systematic review. Comput. Hum. Behav. 28(3), 771–780 (2012)CrossRefGoogle Scholar
  19. 19.
    Zimmerli, L., Jacky, M., Lünenburger, L., Riener, R., Bolliger, M.: Increasing patient engagement during virtual reality-based motor rehabilitation. Arch. Phys. Med. Rehabil. 94(9), 1737–1746 (2013)CrossRefGoogle Scholar
  20. 20.
    Lohse, K., Shirzad, N., Verster, A., Hodges, N., Van der Loos, H.F.M.: Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J. Neurol. Phys. Ther. 37(4), 166–175 (2013)CrossRefGoogle Scholar
  21. 21.
    Heckhausen, J., Baltes, P.B.: Perceived controllability of expected psychological change across adulthood and old age. J. Gerontol. 46(4), P165–P173 (1991)CrossRefGoogle Scholar
  22. 22.
    Derbali, L., Frasson, C.: assessment of learners’ motivation during interactions with serious games: a study of some motivational strategies in food-force. Adv. Hum.-Comput. Interact. 2012, 1–15 (2012)CrossRefGoogle Scholar
  23. 23.
    Keller, J., Suzuki, K.: Learner motivation and E-learning design: a multinationally validated process. J. Educ. Media 29(3), 229–239 (2004)CrossRefGoogle Scholar
  24. 24.
    Malone, T., Lepper, M.R.: making learning fun: a taxonomy of intrinsic motivations for learning. In Snow, R., Farr, M.J. (eds.) Aptitude, Learning, and Instruction, Conative and Affective Process Analyses, vol. 3, Hillsdale, NJ (1987). http://ocw.metu.edu.tr/mod/resource/view.php?id=1311. Accessed 24 Sep 2016, CEIT506-EN
  25. 25.
    Csikszentmihalyi, M., LeFevre, J.: Optimal experience in work and leisure. J. Pers. Soc. Psychol. 56(5), 815–822 (1989)CrossRefGoogle Scholar
  26. 26.
    FlowFig1.png (298 × 246). http://edutechwiki.unige.ch/fmediawiki/images/4/46/FlowFig1.png. Accessed 10 Apr 2017
  27. 27.
    Lotfi, E., Amine, B., Mohammed, B.: Players performances analysis based on educational data mining case of study: interactive waste sorting serious game. Int. J. Comput. Appl. 108(11), 13–18 (2014)Google Scholar
  28. 28.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Salzberg, S.L.: C4. 5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993. Mach. Learn. 16(3), 235–240 (1994)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Computer Science, Systems and Telecommunication Laboratory (LIST), Faculty of Sciences and TechnologiesUniversity Abdelmalek EssaadiTangierMorocco

Personalised recommendations