Advertisement

Iris Recognition Algorithm Analysis and Implementation

  • Siham Kichou
  • Abdessalam Ait Madi
  • Hassan Erguig
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)

Abstract

This paper focusses upon studying and implementing the iris recognition algorithm available on Open source and implemented by Masek and analysis of results using Chinese academy of sciences-institute of automation (CASIA) database.

Keywords

Iris Recognition Daugman algorithm Segmentation Iris code 

References

  1. 1.
    Chinese academy of sciences – institute of automation. Database of greyscale eye images. http://www.cbsr.ia.ac.cn/irisdatabase.htm
  2. 2.
    Kolodgy, C.: Authentication is something you have, something you know, and something you are when you add biometrics. idc, framingham, ma. Infoworld (2001)Google Scholar
  3. 3.
    Narote, S.P., Narote, A.S., Waghmare, L.M.: Iris based recognition system using wavelet transform. Int. J. comput. Sci. Netw. Secur. 9, 101–102 (2009)Google Scholar
  4. 4.
    Proenca, H., Alexandre, L.A.: Iris recognition: measuring feature’s quality for the feature selectio in unconstrained image capture environments. In: Proceedings of 2006 International Conference on Computational Intelligence for Homeland Security and Personal Safety, vol. 1, pp. 35–40 (2006)Google Scholar
  5. 5.
    Proenca, H., Alexandre, L.A.: Iris recognition: an analysis of the aliasing problem in the iris normalization stage. In: Proceedings of 2006 International Conference on Computational Intelligence and Security, vol. 2, pp. 1771–1774 (2006)Google Scholar
  6. 6.
    Daugman, J.: High confidence visual recognition of persons by a test of statistical independence. IEEE. Tans. Pattern Anal. Mach. Intell. 15, 1148–1161 (1993)CrossRefGoogle Scholar
  7. 7.
    Daugman, J.: How iris recognition works. IEEE Trans. Circuits. Syst. Video Technol. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  8. 8.
    Daugman, J.: New methods in iris recognition. IEEE Trans. Syst. Man Cybern. 37(5), 1167–1175 (2007)CrossRefGoogle Scholar
  9. 9.
    Daugman, J.: The importance of being random: statistical principles of iris recognition. Pattern Recogn. 36, 279–291 (2003)CrossRefGoogle Scholar
  10. 10.
    Masek, L.: Recognition of human iris patterns for biometric identification. M.S. Thesis, University of Western Australia (2003)Google Scholar
  11. 11.
    Kovesi, P.: Matlab functions for computer vision and image analysis. http://www.cs.uwa.edu.au/~pk/research/matlabfns/index.html
  12. 12.
    Masek, L., Kovesi, P.: Matlab source code for a biometric identification system based on iris patterns. The School of Computer Science and software Engineering, The University of Western Australia (2003)Google Scholar
  13. 13.
    Daugman, J.: Biometric personal identification system based on iris analysis. US patent, patent number: 5,291,560 (1994)Google Scholar
  14. 14.
    Chinese academy of sciences – institute of automation. Database of 756 greyscale eye images. http://www.sinobiometrics.com version 1.0 (2003)

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.National School of Applied SciencesIbn Tofail UniversityKenitraMorocco
  2. 2.Faculty of Sciences and TechnologySidi Mohammed Ben Abdellah UniversityFezMorocco

Personalised recommendations