Skip to main content

A General Overview of 3D RNA Structure Prediction Approaches

  • Conference paper
  • First Online:
Innovations in Smart Cities and Applications (SCAMS 2017)

Abstract

The function of the RNA molecule depends on its three-dimensional (3D) structure. Therefore, understanding the role of the RNA molecule requires detailed knowledge of its 3D structure. Initially, this task was performed experimentally using X-ray crystallography and NMR spectroscopy, but this technique remains limited to small molecules and becomes more expensive for large molecules. For this reason, the number of RNA 3D structures in databases increases in a difficult way. In the other hand, the number of RNA sequences increases rapidly, due to the high development of the sequencing tools. In order to remedy this shortcoming, a number of computational methods have been developed based on different aspects, such as dynamic molecular fragments or pattern and the coarse-grained potentials to predict the RNA 3D structure. In this paper we give a general overview of these methods, their categories, their advantages and their drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiro, B.A., Yingling, Y.G., Kasprzak, W., Bindewald, E.: Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17(2), 157–165 (2007)

    Article  Google Scholar 

  2. Tinoco, I., Bustamante, C.: How RNA folds. J. Mol. Biol. 293(2), 271–281 (1999)

    Article  Google Scholar 

  3. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148 (1981)

    Article  Google Scholar 

  4. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures, Monatshefte fr Chemie/Chem. Mon. 125(2), 167–188 (1994)

    Google Scholar 

  5. Do, C.B., Woods, D.A., Batzoglou, S.: Contrafold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14), e90–e98 (2006)

    Article  Google Scholar 

  6. Sharma, S., Ding, F., Dokholyan, N.V.: iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24(17), 1951–1952 (2008)

    Article  Google Scholar 

  7. Gherghe, C.M., Leonard, C.W., Ding, F., Dokholyan, N.V., Weeks, K.M.: Native like RNA tertiary structures using a sequence-encoded cleavage agent and refinement by discrete molecular dynamics. J. Am. Chem. Soc. 131(7), 2541 (2009)

    Article  Google Scholar 

  8. Jonikas, M.A., Radmer, R.J., Laederach, A., Das, R., Pearlman, S., Herschlag, D., Altman, R.B.: Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15(2), 189–199 (2009)

    Article  Google Scholar 

  9. Frellsen, J., Moltke, I., Thiim, M., Mardia, K.V., Ferkinghoff-Borg, J., Hamelryck, T.: A probabilistic model of RNA conformational space. PLoS Comput. Biol. 5(6), e1000406 (2009)

    Article  Google Scholar 

  10. Ghahramani, Z.: Learning dynamic bayesian networks. In: Adaptive processing of sequences and data structures, pp. 168–197. Springer, Heidelberg (1998)

    Google Scholar 

  11. Das, R., Baker, D.: Automated de novo prediction of native-like RNA tertiary structures. Proc. Nat. Acad. Sci. 104(37), 14664–14669 (2007)

    Article  Google Scholar 

  12. Yarov-Yarovoy, V., Schonbrun, J., Baker, D.: Multipass membrane protein structure prediction using Rosetta. Proteins Struct. Funct. Bioinf. 62(4), 1010–1025 (2006)

    Article  Google Scholar 

  13. Parisien, M., Major, F.: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183), 51–55 (2008)

    Article  Google Scholar 

  14. Reinharz, V., Major, F., Waldisphl, J.: Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure. Bioinformatics 28(12), i207–i214 (2012)

    Article  Google Scholar 

  15. Popenda, M., Szachniuk, M., Antczak, M., Purzycka, K.J., Lukasiak, P., Bartol, N., Blazewicz, J., Adamiak, R.W.: Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40(14), e112 (2012). p. gks339

    Article  Google Scholar 

  16. Popenda, M., Szachniuk, M., Blazewicz, M., Wasik, S., Burke, E.K., Blazewicz, J., Adamiak, R.W.: RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinf. 11(1), 231 (2010)

    Article  Google Scholar 

  17. Brooks, B.R., Brooks, C.L., MacKerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., et al.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  Google Scholar 

  18. Laing, C., Jung, S., Kim, N., Elmetwaly, S., Zahran, M., Schlick, T.: Predicting helical topologies in RNA junctions as tree graphs. PLoS ONE 8(8), e71947 (2013)

    Article  Google Scholar 

  19. Kim, N., Laing, C., Elmetwaly, S., Jung, S., Curuksu, J., Schlick, T.: Graph-based sampling for approximating global helical topologies of RNA. Proc. Nat. Acad. Sci. 111(11), 4079–4084 (2014)

    Article  Google Scholar 

  20. Lamiable, A., Quessette, F., Vial, S., Barth, D., Denise, A.: An algorithmic game-theory approach for coarse-grain prediction of RNA 3D structure. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 10(1), 193–199 (2013)

    Article  Google Scholar 

  21. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boudard, M., Bernauer, J., Barth, D., Cohen, J., Denise, A.: GARN: sampling RNA 3D structure space with game theory and knowledge-based scoring strategies. PLoS ONE 10(8), e0136444 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arakil Chentoufi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chentoufi, A., Fatmi, A.E., Bekri, A., Benhlima, S., Sabbane, M. (2018). A General Overview of 3D RNA Structure Prediction Approaches. In: Ben Ahmed, M., Boudhir, A. (eds) Innovations in Smart Cities and Applications. SCAMS 2017. Lecture Notes in Networks and Systems, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-74500-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74500-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74499-5

  • Online ISBN: 978-3-319-74500-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics