Advertisement

A General Overview of 3D RNA Structure Prediction Approaches

  • Arakil Chentoufi
  • Abdelhakim El Fatmi
  • Ali Bekri
  • Said Benhlima
  • Mohamed Sabbane
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)

Abstract

The function of the RNA molecule depends on its three-dimensional (3D) structure. Therefore, understanding the role of the RNA molecule requires detailed knowledge of its 3D structure. Initially, this task was performed experimentally using X-ray crystallography and NMR spectroscopy, but this technique remains limited to small molecules and becomes more expensive for large molecules. For this reason, the number of RNA 3D structures in databases increases in a difficult way. In the other hand, the number of RNA sequences increases rapidly, due to the high development of the sequencing tools. In order to remedy this shortcoming, a number of computational methods have been developed based on different aspects, such as dynamic molecular fragments or pattern and the coarse-grained potentials to predict the RNA 3D structure. In this paper we give a general overview of these methods, their categories, their advantages and their drawbacks.

Keywords

RNA structure RNA 3D structure prediction Molecular dynamics Knowledge-based energy function Coarse-grained modeling 

References

  1. 1.
    Shapiro, B.A., Yingling, Y.G., Kasprzak, W., Bindewald, E.: Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17(2), 157–165 (2007)CrossRefGoogle Scholar
  2. 2.
    Tinoco, I., Bustamante, C.: How RNA folds. J. Mol. Biol. 293(2), 271–281 (1999)CrossRefGoogle Scholar
  3. 3.
    Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148 (1981)CrossRefGoogle Scholar
  4. 4.
    Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures, Monatshefte fr Chemie/Chem. Mon. 125(2), 167–188 (1994)Google Scholar
  5. 5.
    Do, C.B., Woods, D.A., Batzoglou, S.: Contrafold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14), e90–e98 (2006)CrossRefGoogle Scholar
  6. 6.
    Sharma, S., Ding, F., Dokholyan, N.V.: iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24(17), 1951–1952 (2008)CrossRefGoogle Scholar
  7. 7.
    Gherghe, C.M., Leonard, C.W., Ding, F., Dokholyan, N.V., Weeks, K.M.: Native like RNA tertiary structures using a sequence-encoded cleavage agent and refinement by discrete molecular dynamics. J. Am. Chem. Soc. 131(7), 2541 (2009)CrossRefGoogle Scholar
  8. 8.
    Jonikas, M.A., Radmer, R.J., Laederach, A., Das, R., Pearlman, S., Herschlag, D., Altman, R.B.: Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15(2), 189–199 (2009)CrossRefGoogle Scholar
  9. 9.
    Frellsen, J., Moltke, I., Thiim, M., Mardia, K.V., Ferkinghoff-Borg, J., Hamelryck, T.: A probabilistic model of RNA conformational space. PLoS Comput. Biol. 5(6), e1000406 (2009)CrossRefGoogle Scholar
  10. 10.
    Ghahramani, Z.: Learning dynamic bayesian networks. In: Adaptive processing of sequences and data structures, pp. 168–197. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Das, R., Baker, D.: Automated de novo prediction of native-like RNA tertiary structures. Proc. Nat. Acad. Sci. 104(37), 14664–14669 (2007)CrossRefGoogle Scholar
  12. 12.
    Yarov-Yarovoy, V., Schonbrun, J., Baker, D.: Multipass membrane protein structure prediction using Rosetta. Proteins Struct. Funct. Bioinf. 62(4), 1010–1025 (2006)CrossRefGoogle Scholar
  13. 13.
    Parisien, M., Major, F.: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183), 51–55 (2008)CrossRefGoogle Scholar
  14. 14.
    Reinharz, V., Major, F., Waldisphl, J.: Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure. Bioinformatics 28(12), i207–i214 (2012)CrossRefGoogle Scholar
  15. 15.
    Popenda, M., Szachniuk, M., Antczak, M., Purzycka, K.J., Lukasiak, P., Bartol, N., Blazewicz, J., Adamiak, R.W.: Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40(14), e112 (2012). p. gks339CrossRefGoogle Scholar
  16. 16.
    Popenda, M., Szachniuk, M., Blazewicz, M., Wasik, S., Burke, E.K., Blazewicz, J., Adamiak, R.W.: RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinf. 11(1), 231 (2010)CrossRefGoogle Scholar
  17. 17.
    Brooks, B.R., Brooks, C.L., MacKerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., et al.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)CrossRefGoogle Scholar
  18. 18.
    Laing, C., Jung, S., Kim, N., Elmetwaly, S., Zahran, M., Schlick, T.: Predicting helical topologies in RNA junctions as tree graphs. PLoS ONE 8(8), e71947 (2013)CrossRefGoogle Scholar
  19. 19.
    Kim, N., Laing, C., Elmetwaly, S., Jung, S., Curuksu, J., Schlick, T.: Graph-based sampling for approximating global helical topologies of RNA. Proc. Nat. Acad. Sci. 111(11), 4079–4084 (2014)CrossRefGoogle Scholar
  20. 20.
    Lamiable, A., Quessette, F., Vial, S., Barth, D., Denise, A.: An algorithmic game-theory approach for coarse-grain prediction of RNA 3D structure. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 10(1), 193–199 (2013)CrossRefGoogle Scholar
  21. 21.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Boudard, M., Bernauer, J., Barth, D., Cohen, J., Denise, A.: GARN: sampling RNA 3D structure space with game theory and knowledge-based scoring strategies. PLoS ONE 10(8), e0136444 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.MACS Lab, Faculty of Science, Computer Science DepartmentMoulay Ismail UniversityMeknesMorocco

Personalised recommendations