Compact CPW-Fed Microstrip Octagonal Patch Antenna with Hilbert Fractal Slots for WLAN and WIMAX Applications

  • Mohamed Tarbouch
  • Abdelkebir El amri
  • Hanae Terchoune
  • Ouadiaa Barrou
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)

Abstract

In this paper, a Coplanar Wave Guide (CPW)-Fed microstrip octagonal patch antenna for WLAN and WIMAX Applications is proposed. The studied structure is suitable for 2.3/2.5/3.3/3.5/5/5.5 GHz WIMAX and for 3.6/2.4–2.5/4.9–5.9 GHz WLAN applications. The octagonal shape is obtained by cutting a small triangular part in the four angles of the rectangular microstrip patch antenna; in addition the using of CPW-Fed allows obtaining Ultra Wide Band (UWB) characteristics. The miniaturization in the antenna size for lower band is achieved by introducing the Hilbert fractal slots in the radiating element. The proposed antenna is designed on a single and a small substrate board of dimensions 46 × 40 × 1.6 mm3. Moreover the setup of Hilbert fractal slots allows obtaining lower resonant frequencies, more −10 dB bandwidths, more resonant frequencies and important gains. All the simulations were performed in CADFEKO, a Method of Moment (MoM) based solver.

Keywords

CADFEKO CPW-Fed Hilbert fractal Miniaturization  WIMAX WLAN 

References

  1. 1.
    Korowajczuk, L.: LTE, WIMAX, and WLAN Network Design, Optimization and Performance Analysis. Wiley, Chichester (2011)CrossRefGoogle Scholar
  2. 2.
    Borhani, M., Rezaei, P., Valizade, A.: Design of a reconfigurable miniaturized microstrip antenna for switchable multiband systems. IEEE Antennas Wirel. Propag. Lett. 15, 822–825 (2016)CrossRefGoogle Scholar
  3. 3.
    Boukarkar, A., Lin, X.Q., Jiang, Y.: A dual-band frequency-tunable magnetic dipole antenna for WiMAX/WLAN applications. IEEE Antennas Wirel. Propag. Lett. 15, 492–495 (2016)CrossRefGoogle Scholar
  4. 4.
    Shi, X.W., Wu, T., Bai, H., Li, P.: Tri-band microstrip-fed monopole antenna with dualpolarisation characteristics for WLAN and WiMAX applications. Electron. Lett. 49(25), 1597–1598 (2013)CrossRefGoogle Scholar
  5. 5.
    Wen, J., Wenquan, C.: A novel UWB antenna with dual notched bands for WiMAX and WLAN applications. IEEE Antennas Wirel. Propag. Lett. 11, 293–296 (2012)CrossRefGoogle Scholar
  6. 6.
    Reha, A., El Amri, A., Benhmammouch, O., Oulad Said, A., El Ouadih, A., Bouchouirbat, M.: CPW-Fed H-tree fractal antenna for WLAN, WIMAX, RFID, C-band, HiperLAN, and UWB applications. Int. J. Microw. Wirel. Technol. 1–8 (2015)Google Scholar
  7. 7.
    Reha, A., El Amri, A., Benhmammouch, O., Oulad Said, A., El Ouadih, A., Bouchouirbat, M.: CPW-Fed slotted CANTOR set fractal antenna for WiMAX and WLAN applications. Int. J.Microw. Wirel. Technol. 1–7, May 2016Google Scholar
  8. 8.
    Basaran, S.C., Olgun, U., Sertel, K.: Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications. Electron. Lett. 49(10), 636–638 (2013)CrossRefGoogle Scholar
  9. 9.
    Perahia, E., Stacey, R.: Next Generation Wireless LANs: 802.11n, 802.11ac, and Wi-Fi Direct, 2nd edn. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  10. 10.
    Gast, M.: 802.11 Wireless Networks: The Definitive Guide, 2nd edn. O’Reilly, Beijing (2005)Google Scholar
  11. 11.
    Bakariya, P.S., Dwari, S., Sarkar, M., Mandal, M.K.: Proximity-coupled microstrip antenna for bluetooth, WiMAX, and WLAN applications. IEEE Antennas Wirel. Propag. Lett. 14, 755–758 (2015)CrossRefGoogle Scholar
  12. 12.
    Chen, H.T., Wong, K.L., Chiou, T.W.: PIFA with a meandered and folded patch for the dual-band mobile phone application. IEEE Trans. Antennas Propag. 51(9), 2468–2471 (2013)CrossRefGoogle Scholar
  13. 13.
    Reha, A., El Amri, A., Benhmammouch, O., Oulad Said, A.: Fractal antennas : a novel miniaturization technique for wireless networks. Trans. Netw. Commun. 2(5), 165–193 (2014)Google Scholar
  14. 14.
    Sun, S., Zhu, L.: Miniaturised patch hybrid couplers using asymmetrically loaded cross slots. IET Microw. Antennas Propag. 4(9), 1427 (2010)CrossRefGoogle Scholar
  15. 15.
    Chi, P.L., Waterhouse, R., Itoh, T.: Antenna miniaturization using slow wave enhancement factor from loaded transmission line models. IEEE Trans. Antennas Propag. 59(1), 48–57 (2011)CrossRefGoogle Scholar
  16. 16.
    Skrivervik, A.K., Zürcher, J.F., Staub, O., Mosig, J.R.: PCS antenna design: the challenge of miniaturization. IEEE Antenn Propag Mag. 43(4), 12–27 (2001)CrossRefGoogle Scholar
  17. 17.
    Reha, A., El Amri, A., Saih, M., Benhmammouch, O., Oulad Said, A.: The behavior of a CPW-Fed microstrip hexagonal patch antenna with H-Tree Fractal slots. Rev. Méditerranéenne Télécommunication 5(2), 104–108 (2015)Google Scholar
  18. 18.
    Kakoyiannis, C.G., Constantinou, P.: A compact microstrip antenna with tapered peripheral slits for CubeSat RF payloads at 436 MHz: miniaturization techniques, design, and numerical results. In: Proceedings of the IEEE International Workshop on Satellite and Space Communications (IWSSC08), pp. 255–259 (2008)Google Scholar
  19. 19.
    Anguera, J., Boada, L., Puente, C., Borja, C., Soler, J.: Stacked H-shaped microstrip patch antenna. IEEE Trans. Antennas Propag. 52(4), 983–993 (2004)CrossRefGoogle Scholar
  20. 20.
    Bokhari, S.A., Zurcher, J.F., Mosig, J.R., Gardiol, F.E.: A small microstrip patch antenna with a convenient tuning option. IEEE Trans. Antennas Propag. 44(11), 1521–1528 (1996)CrossRefGoogle Scholar
  21. 21.
    Chatterjee, S., Ghosh, K., Paul, J., Chowdhury, S.K., Chanda, D., Sarkar, P.P.: Compact microstrip antenna for mobile communication. Microw. Opt. Technol. Lett 55(5), 954–957 (2013)CrossRefGoogle Scholar
  22. 22.
    Chen, W.S., Wu, C.K.: Wong, K.l.: Square-ring microstrip antenna with a crossstrip for compact circular polarization operation. IEEE Trans. Antennas Propag. 47(10), 1566–1568 (1999)CrossRefGoogle Scholar
  23. 23.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1983)Google Scholar
  24. 24.
    Mandelbrot, B.B.: Les Objets Fractals. 4e éd., Flammarion (1995)Google Scholar
  25. 25.
    Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Chichester (2003)CrossRefMATHGoogle Scholar
  26. 26.
    Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann. 38, 459–460 (1891)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Gonzalez-Arbesu, J.M., Blanch, S., Romeu, J.: THE Hilbert curve as a small self-resonant monopole from a practical point of vieW. Microwave Optical Technol. Lett. 39(1), 45–49 (2003)CrossRefGoogle Scholar
  28. 28.
    Murad, N.A., et al.: Hilbert curve fractal antenna for RFID application. In: Proceedings of International RF and Microwave Conference, 12–14 September 2006, Putrajaya, Malaysia, pp. 182–186 (2006)Google Scholar
  29. 29.
    Sanz, I., et al.: The Hilbert monopole revisited. In: Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1–4 (2010)Google Scholar
  30. 30.
    Huang, J.-T., Shiao, J.-H., Wu, J.-M.: A miniaturized Hilbert inverted-F antenna for wireless sensor network applications. IEEE Trans. Antennas Propag. 58(9), 3100–3103 (2010)CrossRefGoogle Scholar
  31. 31.
    Suganthi, S.: Study of compact Hilbert curve fractal antennas for implantable medical applications. Int. J. Emerg. Technol. Adv. Eng. 2(10), 116–125 (2012)MathSciNetGoogle Scholar
  32. 32.
    Reha, A., El Amri, A.: Design, realization and measurements of CPW-Fed microstrip hexagonal patch antenna with H-tree fractal slots for WLAN and WIMAX applications. Int. J. Microw. Opt. Technol. 11(4), 251–258 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mohamed Tarbouch
    • 1
  • Abdelkebir El amri
    • 1
  • Hanae Terchoune
    • 1
  • Ouadiaa Barrou
    • 1
  1. 1.RITM Laboratory, CED Engineering SciencesEcole Supérieure de Technologie, Hassan II University of CasablancaCasablancaMorocco

Personalised recommendations