Advertisement

Big Data: Methods, Prospects, Techniques

  • Lamrani Kaoutar
  • Abderrahim Ghadi
  • Florent Kunalè Kudagba
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)

Abstract

Nowadays, Web content knows a rapid increase in syntactic data that makes their processing and storage difficult in classical systems. An alternative approach is to represent the Web in a more understandable form by the machines based on the initiative of the semantic web, on the new technologies and algorithms existing in parallelism, cloud computing, distributed systems and big data mining. These new intelligent techniques allow us to give new representations to the sources of the Web. Our research will develop around the semantic search of information on a set of massive, distributed, autonomous and heterogeneous Resource Description Framework (RDF) data. However, only a representation format of knowledge for their semantic access is not sufficient and we need strong response mechanisms to efficiently handle global and distributed queries on a set of RDF data marked by the dynamics and scalability of their content.

Keywords

Domain ontology E-commerce E-catalogues Semantic web Distributed queries RDF Cloud computing Big data 

References

  1. 1.
    Mayer-Schonberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work, and Think. Eamon Dolan/Mariner Books (2014)Google Scholar
  2. 2.
    W3C. Rdf - semantic web standards. https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
  3. 3.
    Big data mining with parallel computing: a comparison of distributed and MapReduce methodologies.  https://doi.org/10.1016/j.jss.2016.09.007
  4. 4.
    Tsai, C.-F., Lin, W.-C., Ke, S.-W.: Big data mining with parallel computing: a comparison of distributed and MapReduce methodologies. J. Syst. Softw. (2016).  https://doi.org/10.1016/j.jss.2016.09.007 Google Scholar
  5. 5.
    Odom, P.S., Massey, M.J.: Tiered hashing for data access. Google Patents (2003)Google Scholar
  6. 6.
    Gani, A., Siddiqa, A., Shamshirband, S., Hanum, F.: A survey on indexing techniques for big data: taxonomy and performance evaluation. Knowl. Inf. Syst. 46(2), 241–284 (2016)CrossRefGoogle Scholar
  7. 7.
    Song, H., Dharmapurikar, S., Turner, J., Lockwood, J.: Fast hash table lookup using extended bloom filter: an aid to network processing. ACMSIGCOMM Comput. Commun. Rev. 35(4), 181–192 (2005)CrossRefGoogle Scholar
  8. 8.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)CrossRefzbMATHGoogle Scholar
  9. 9.
    Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. arXiv preprint arXiv:1212.0873 (2012)
  10. 10.
    Shang, W., Jiang, Z.M., Hemmati, H., Adams, B., Hassan, A.E., Martin, P.: Assisting developers of big data analytics applications when deploying on hadoop clouds. In: Proceedings of the 2013 International Conference on Software Engineering, pp. 402–411. IEEE Press (2013)Google Scholar
  11. 11.
    Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., et al.: Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2(2), 1626–1629 (2009)CrossRefGoogle Scholar
  12. 12.
    Han, J., Haihong, E., Le, G., Du, J.: Survey on NoSQL database. In: 2011 6th International Conference on Pervasive Computing and Applications (ICPCA), pp. 363–366. IEEE (2011)Google Scholar
  13. 13.
    Goranko, V., Kyrilov, A., Shkatov, D.: Tableau tool for testing satisfiability in LTL: implementation and experimental analysis. Electron. Notes Theor. Comput. Sci. 262, 113–125 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, C.P., Zhang, C.-Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)CrossRefGoogle Scholar
  15. 15.
    Russom, P.: Big data analytics. In: TDWI Best Practices Report. Fourth Quarter (2011)Google Scholar
  16. 16.
    Big data: from beginning to future. http://doi.org/10.1016/j.ijinfomgt.2016.07.009
  17. 17.
    Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: The 26th IEEE Symposium on Mass Storage System and Technologies (2010)Google Scholar
  18. 18.
    Ovsiannikov, M., Rus, S., Reeves, D., Sutter, P., Rao, S., Kelly, J.: The Quantcast file system. Proc. VLDB Endow. 6(11), 1092–1101 (2013)CrossRefGoogle Scholar
  19. 19.
    Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high performance distributed file system. In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI), pp. 307–320 (2006)Google Scholar
  20. 20.
    Weil, S.A., Pollack, K.T., Brandt, S.A., Miller, E.L.: Dynamic metadata management for petabyte-scale file systems. In: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, SC 2004, Washington, DC, USA, p. 4. IEEE Computer Society (2004)Google Scholar
  21. 21.
    Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Peterson, L. (ed.) Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, October 2003, pp. 29–43. ACM, New York (2003)Google Scholar
  22. 22.
    Cluster File System Inc.: Lustre: a scalable, high-performance file system—White Paper. Cluster File Systems, Inc. (2002)Google Scholar
  23. 23.
    Fadden, S.: IBM general purpose file system—a White Paper (2012)Google Scholar
  24. 24.
    Wilcox-O’Hearn, Z., Warner, B.: Tahoe: the least-authority filesystem. In: Proceedings of the 4th ACM International Workshop on Storage Security and Survivability, StorageSS 2008, New York, NY, USA, pp. 21–26. Association for Computing Machinery (2008)Google Scholar
  25. 25.
    Nicolae, B., Antoniu, G., Bougé, L.: BlobSeer: how to enable efficient versioning for large object storage under heavy access concurrency. In: Proceedings of the 2009 EDBT/ICDT Workshops, New York, NY, USA, pp. 18–25. Association for Computing Machinery (2009)Google Scholar
  26. 26.
    Osamu, T., Hiraga, K., Soda, N.: Gfarm grid file system. New Gener. Comput. 28(3), 257–275 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Hupfeld, F., Cortes, T., Kolbeck, B., Stender, J., Focht, E., Hess, M., Malo, J., Marti, J., Cesario, E.: The XtreemFS architecture—a case for object-based file systems in grids. Concurrency Comput. Pract. Experience 8(17), 1–12 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Lamrani Kaoutar
    • 1
  • Abderrahim Ghadi
    • 1
  • Florent Kunalè Kudagba
    • 1
  1. 1.List Laboratory, Faculty of Sciences and TechniquesUniversity Abdelmalek EssaadiTangierMorocco

Personalised recommendations