Combined Mean Shift and Interactive Multiple Model for Visual Tracking by Fusing Multiple Cues

Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)

Abstract

To overcome the tracking issues caused by the complex environment namely illumination variation and background clutters, tracking algorithm was proposed based on multi-cues fusion to construct a robust appearance model, indeed the traditional Mean Shift (MS) estimate the state associated with each sub appearance model, and the interactive multiple model (IMM) adjusts the weights of different cues and then combine the sub appearance models to estimate the general state. The proposed method is tested on public videos that present different environment issues. Experiences and comparisons conducted show the robustness of our methods in challenging tracking conditions.

Keywords

Visual tracking Mean shift Interactive multiple models 

References

  1. 1.
    Li, X., Weiming, H., Shen, C., Zhang, Z., Dick, A., van den Hengel, A.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4, 1–48 (2013)Google Scholar
  2. 2.
    Wu, S., Hong, L.: Hand tracking in a natural conversational environment by the interacting multiple model and probabilistic data association (IMM-PDA) algorithm. Pattern Recogn. 38, 2143–2158 (2005)CrossRefGoogle Scholar
  3. 3.
    Zhang, L., Zhang, D., Wu, C.: Robust mean-shift tracking with corrected background-weighted histogram. IET Comput. Vis. 6, 62–69 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)CrossRefGoogle Scholar
  5. 5.
    Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian Tracking. IEEE Trans. Signal Process. 50(2), 174–189 (2002)CrossRefGoogle Scholar
  6. 6.
    Dou, J., Li, J.: Robust visual tracking based on interactive multiple model particle filter by integrating multiple cues. Neurocomputing 135, 118–129 (2014)CrossRefGoogle Scholar
  7. 7.
    Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. In: CVPR (2001)Google Scholar
  8. 8.
    Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1631–1643 (2004)CrossRefGoogle Scholar
  9. 9.
    Li, G., Liang, D., Huang, Q., Jiang, S., Gao, W.: Object tracking using incremental 2D-LDA learning and Bayes inference. In: ICIP (2008)Google Scholar
  10. 10.
    Avidan, S.: Ensemble tracking. In: CVPR (2005)Google Scholar
  11. 11.
    Wu, Y., Lim, J., Yang, M.-H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. PP(99) (2015)Google Scholar
  12. 12.
    Leichter, I., Lindenbaum, M., Rivlin, E.: Mean Shift tracking with multiple reference color histograms. Comput. Vis. Image Underst. 114, 400–408 (2010)CrossRefGoogle Scholar
  13. 13.
    Li, S.X., Chang, H.X., Zhu, C.F.: Adaptive pyramid mean shift for global real-time visual tracking. Image Vis. Comput. 28(3), 424–437 (2010)CrossRefGoogle Scholar
  14. 14.
    Mazinan, A.H., Amir-Latifi, A.: Applying mean shift, motion information and Kalman filtering approaches to object tracking. ISA Trans. 51, 485–497 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhou, H., Yuan, Y., Shi, C.: Object tracking using SIFT features and mean shift. Comput. Vis. Image Underst. 113, 345–352 (2009)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Ze, Y., Zha, H., Zou, Y., Zhang, L.: Robust human tracking based on multi-cue integration and mean-shift. Pattern Recogn. Lett. 30, 827–837 (2009)CrossRefGoogle Scholar
  17. 17.
    Soni, D., Mathai, K.J.: An efficient content based image retrieval system based on color space approach using color histogram and color correlogram. In: Fifth International Conference on Communication Systems and Network Technologies, pp. 488–492 (2015)Google Scholar
  18. 18.
    Vikhar, P., Karde, P.: Improved CBIR system using Edge Histogram Descriptor (EHD) and Support Vector Machine (SVM). In: International Conference on ICT in Business Industry & Government (ICTBIG), pp 1–5 (2016)Google Scholar
  19. 19.
    Kalakech, M., Porebski, A., Vandenbroucke, N., Hamad, D.: A new LBP histogram selection score for color texture classification. In: International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 242–247 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of Electronics, Signals, Systems and Computers, Department of Physics, Faculty of Sciences Dhar-MahrazSidi Mohamed Ben Abdellah UniversityFesMorocco

Personalised recommendations