Fuzzy C-Means Based Hierarchical Routing Approach for Homogenous WSN

  • Aziz Mahboub
  • El Mokhtar En-Naimi
  • Mounir Arioua
  • Hamid Barkouk
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)


The global challenge in wireless sensor networks is to extend the network’s lifespan as long as possible. The sensor’s battery has a limited life and unfeasible to be replaced, which eventually requires an energy efficient routing protocol. Clustering applied in routing has proven its ability to saving energy in sensor networks. The current paper proposes a new approach based on Fuzzy C-means and LEACH protocol to form the clusters and manage the transmission of data to the base station. A cluster estimation method was adopted as the basis for identifying fuzzy model. The proposed approach minimizes the energy consumption and prolongs the network lifetime of the sensor nodes.


Wireless sensor network Fuzzy C-means algorithm Cluster estimation Energy efficiency 


  1. 1.
    Güngör, V.Ç, Hancke, G.P.: Industrial Wireless Sensor Networks: Applications, Protocols, and Standards. CRC Press (83), pp. 1027–1040 (2013)Google Scholar
  2. 2.
    Heinzelman, W., Chandrakasan, A., Balakrisham, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceeding of the 33rd Annual Hawaii International Conference on System Sciences, pp. 3005–3014 (2000)Google Scholar
  3. 3.
    Akyildiz, I.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)CrossRefGoogle Scholar
  4. 4.
    Mahboub, A., Arioua, M., En-Naimi, E.M., Ezzazi, I.: Performance evolution of energy-efficient clustering algorithms in wireless sensor network. J. Theor. Appl. Inf. Technol. 83(2), 1–8 (2016)Google Scholar
  5. 5.
    Mahboub, A., Arioua, M., En-Naimi, E.M., Ezzazi, I.: Multi-zonal approach for clustered wireless sensor networks. In: 2nd International Conference on Electrical and Information Technologies, ICEIT. IEEE (2016)Google Scholar
  6. 6.
    Zhu, P.: A new approach to sensor energy saving algorithm. TELKOMNIKA 11(5), 2485–2489 (2013)Google Scholar
  7. 7.
    Velmurugan, T.: Performance based analysis between k-Means and fuzzy C-Means clustering algorithms for connection oriented telecommunication data. Appl. Soft Comput. 19, 134–146 (2014)CrossRefGoogle Scholar
  8. 8.
    Mahboub, A., Arioua, M., En-naimi, E.M., Ezzazi, I., El Oualkadi, A.: Multi-zonal approach clustering based on stable election protocol in heterogeneous wireless sensor networks. In: IEEE 4th Edition of the International Colloquium on Information Science and Technology CIST 2016 (2016)Google Scholar
  9. 9.
    Mahboub, A., Arioua, M., En-naimi, E.M.: Energy-efficient hybrid k-means algorithm for clustered wireless sensor networks. Int. J. Electr. Comput. Eng. (IJECE) 7(4), 2054–2060 (2017)CrossRefGoogle Scholar
  10. 10.
    Sharma, N., Verma, V.: Energy efficient LEACH protocol for wireless sensor network. Int. J. Inf. Netw. Secur. (IJINS) 2(4), 333–338 (2013)Google Scholar
  11. 11.
    Kim, D.-W., Lee, K., Lee, D., Lee, K.H.: A kernel-based subtractive clustering method. Pattern Recogn. Lett. 26(7), 879–891 (2005)CrossRefGoogle Scholar
  12. 12.
    Yager, R.R., Filev, D.P.X.: Approximate clustering via the mountain method. IEEE Trans. Syst. Man Cybern. 24(8), 1279–1284 (1994)CrossRefGoogle Scholar
  13. 13.
    Biradar, R.V., Patil, V.C., Sawant, S.R., Mudholkar, R.R.: Classification and comparison of routing protocols in wireless sensor networks. Spec. Issue Ubiquit. Comput. Secur. Syst. 4(2), 704–711 (2009)Google Scholar
  14. 14.
    Goyal, D., Tripathy, M.R.: Routing protocols in wireless sensor networks: a survey, pp. 474–480 (2012)Google Scholar
  15. 15.
    Kim, T., Bezdek, J.C., Hathaway, R.J.: Optimality tests for fixed points of the fuzzy c-means algorithm. Pattern Recogn. 21(6), 651–663 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kapitanova, K., Son, S.H., Kang, K.-D.: Using fuzzy logic for robust event detection in wireless sensor networks. Ad Hoc Netw. 10(4), 709–722 (2012)CrossRefGoogle Scholar
  17. 17.
    Lam, Q.-T., Horng, M.-F., Nguyen, T.-T., Lin, J.-N., Hsu, J.-P.: A high energy efficiency approach based on fuzzy clustering topology for long lifetime in wireless sensor networks. In: Nguyen, N., Trawiński, B., Katarzyniak, R., Jo, G.-S. (eds.) Advanced Methods for Computational Collective Intelligence, vol. 457, pp. 367–376. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Chattopadhyay, S., Pratihar, D.K., De Sarkar, S.C.: A comparative study of fuzzy c-means algorithm and entropy-based fuzzy clustering algorithms. Comput. Inform. 30(4), 701–720 (2011)zbMATHGoogle Scholar
  19. 19.
    Wang, H., Xu, Z., Pedrycz, W.: An overview on the roles of fuzzy set techniques in big data processing: Trends, challenges and opportunities. Knowl.-Based Syst. 118, 15–30 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.LIST Laboratory, Department of Computer Sciences, FST of TangierAbdelmalek Essaâdi UniversityTangierMorocco
  2. 2.Team of New Technology Trends, National School of Applied SciencesAbdelmalek Essaâdi UniversityTetouanMorocco

Personalised recommendations