An Integrated Smart City Platform

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10546)


Smart Cities aim to create a higher quality of life for their citizens, improve business services and promote tourism experience. Fostering smart city innovation at local and regional level requires a set of mature technologies to discover, integrate and harmonize multiple data sources and the exposure of effective applications for end-users (citizens, administrators, tourists ...). In this context, Semantic Web technologies and Linked Open Data principles provide a means for sharing knowledge about cities as physical, economical, social, and technical systems, enabling the development of smart city services. Despite the tremendous effort these communities have done so far, there exists a lack of comprehensive and effective platforms that handle the entire process of identification, ingestion, consumption and publication of data for Smart Cities.

In this paper, a complete open-source platform to boost the integration, semantic enrichment, publication and exploitation of public data to foster smart cities in local and national administrations is proposed. Starting from mature software solutions, we propose a platform to facilitate the harmonization of datasets (open and private, static and dynamic on real time) of the same domain generated by different authorities. The platform provides a unified dataset oriented to smart cities that can be exploited to offer services to the citizens in a uniform way, to easily release open data, and to monitor services status of the city in real time by means of a suite of web applications.


Data integration Open data Linked data Smart city platform Smart Cities Ontology 


  1. 1.
    Mamkaitis, A., Bezbradica, M., Helfert, M.: Urban enterprise: a review of smart city frameworks from an enterprise architecture perspective. In: IEEE International Smart Cities Conference (ISC2), Trento, Italy, 12–15 September, pp. 1–5. IEEE (2016)Google Scholar
  2. 2.
    Bergamaschi, S., Beneventano, D., Corni, A., Kazazi, E., Orsini, M., Po, L., Sorrentino, S.: The open source release of the MOMIS data integration system. In: Proceedings of the Nineteenth Italian Symposium on Advanced Database Systems (SEBD), Maratea, Italy, 26–29 June, pp. 175–186 (2011)Google Scholar
  3. 3.
    Bergamaschi, S., Po, L., Sorrentino, S.: Automatic annotation in data integration systems. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007. LNCS, vol. 4805, pp. 27–28. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  4. 4.
    Bellini, P., Benigni, M., Billero, R., Nesi, P., Rauch, N.: Km4city ontology building vs data harvesting and cleaning for smart-city services. J. Vis. Lang. Comput. 25(6), 827–839 (2014)CrossRefGoogle Scholar
  5. 5.
    Regueiro, M.A., Viqueira, J.R.R., Taboada, J.A., Cotos, J.M.: Virtual integration of sensor observation data. Comput. Geosci. 81, 12–19 (2015)CrossRefGoogle Scholar
  6. 6.
    Regueiro, M.A., Viqueira, J.R.R., Stasch, C., Taboada, J.A.: Semantic mediation of observation datasets through sensor observation services. Future Gener. Comput. Syst. 67, 47–56 (2017)CrossRefGoogle Scholar
  7. 7.
    Regueiro, M.A., Viqueira, J.R.R., Stasch, C., Taboada, J.A.: Sensor observation service semantic mediation: generic wrappers for in-situ and remote devices. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 269–276. Springer, Cham (2016). CrossRefGoogle Scholar
  8. 8.
    Yus, R., Mulwad, V., Finin, T., Mena, E.: Infoboxer: using statistical and semantic knowledge to help create Wikipedia infoboxes. In: 13th International Semantic Web Conference (ISWC), vol. 1272, Riva del Garda, Italy, pp. 405–408. CEUR-WS, October 2014Google Scholar
  9. 9.
    Khan, Z., Anjum, A., Soomro, K., Tahir, M.A.: Towards cloud based big data analytics for smart future cities. J. Cloud Comput. 4(1), 2 (2015)CrossRefGoogle Scholar
  10. 10.
    Albino, V., Berardi, U., Dangelico, R.M.: Smart cities: definitions, dimensions, performance, and initiatives. J. Urban Technol. 22(1), 3–21 (2015)CrossRefGoogle Scholar
  11. 11.
    Curry, E.: The big data value chain: definitions, concepts, and theoretical approaches. In: Cavanillas, J.M., Curry, E., Wahlster, W. (eds.) New Horizons for a Data-Driven Economy - A Roadmap for Usage and Exploitation of Big Data in Europe, pp. 29–37. Springer, Cham (2016). CrossRefGoogle Scholar
  12. 12.
    Beneventano, D., Bergamaschi, S., Gagliardelli, L., Po, L.: Open data for improving youth policies. In: Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD), vol. 2, Lisbon, Portugal, 12–14 November, pp. 118–129 (2015)Google Scholar
  13. 13.
    Beneventano, D., Bergamaschi, S., Gagliardelli, L., Po, L.: Driving innovation in youth policies with open data. In: Fred, A., Dietz, J.L.G., Aveiro, D., Liu, K., Filipe, J. (eds.) IC3K 2015. CCIS, vol. 631, pp. 324–344. Springer, Cham (2016). CrossRefGoogle Scholar
  14. 14.
    Nesi, P., Bellini, P., Bruno, I.: Graph databases lifecycle methodology and tool to support index/store versioning. In: Guercio, A. (ed.) The 21st International Conference on Distributed Multimedia Systems, Vancouver, Canada, 31 August–2 September, pp. 221–230. Knowledge Systems Institute (2015)Google Scholar
  15. 15.
    Nesi, P., Pantaleo, G., Tenti, M.: Ge(o)lo(cator): geographic information extraction from unstructured text data and web documents. In: 9th International Workshop on Semantic and Social Media Adaptation and Personalization, SMAP, Corfu, Greece, 6–7 November, pp. 60–65. IEEE (2014)Google Scholar
  16. 16.
    Berners-Lee, T.: Linked data (2006). Accessed 30 April 2017
  17. 17.
    Benedetti, F., Bergamaschi, S., Po, L.: Lodex: a tool for visual querying linked open data. In: Proceedings of the ISWC Posters & Demonstrations Track Co-Located with the 14th International Semantic Web Conference (ISWC), Bethlehem, PA, USA, 11 October 2015Google Scholar
  18. 18.
    Benedetti, F., Bergamaschi, S., Po, L.: Online index extraction from linked open data sources. In: Proceedings of the 2nd International Workshop on Linked Data for Information Extraction (LD4IE 2014) Co-Located with the 13th International Semantic Web Conference (ISWC 2014), Riva del Garda, Italy, 20 October 2014, pp. 9–20 (2014)Google Scholar
  19. 19.
    Benedetti, F., Bergamaschi, S., Po, L.: Visual querying LOD sources with lodex. In: Proceedings of the 8th International Conference on Knowledge Capture, K-CAP 2015, Palisades, NY, USA, 7–10 October 2015, pp. 12:1–12:8 (2015)Google Scholar
  20. 20.
    Bellini, P., Nesi, P., Venturi, A.: Linked open graph: browsing multiple SPARQL entry points to build your own LOD views. J. Vis. Lang. Comput. 25(6), 703–716 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Information Engineering DepartmentUniversity of FlorenceFlorenceItaly
  2. 2.“Enzo Ferrari” Engineering DepartmentUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
  4. 4.Depto. de Informática e Ingeniería de Sistemas (DIIS) e I3AUniversidad de ZaragozaZaragozaSpain

Personalised recommendations