Exploration of Web Search Results Based on the Formal Concept Analysis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10546)


In this paper, we present an approach to support exploratory search by structuring search results based on concept lattices, which are created on the fly using advanced methods from the area of Formal Concept Analysis (FCA). The main aim of the approach is to organize query based search engine results (e.g. web documents) as a hierarchy of clusters that are composed of documents with similar attributes. The concept lattice provides a structured view on the query-related domains and hence can improve the understanding of document properties and shared features. Additionally, we applied a fuzzy extension of FCA in order to support the usage of different types of attributes within the analyzed query results set. The approach has been integrated into an interactive web search interface. It provides a smooth integration of keyword-based web search and interactive visualization of concept lattice and its concepts in order to support complex search tasks.


Formal Concept Analysis (FCA) Concept Lattice Fuzzy Extension Input Data Table Truth Value Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was done with the help of Short Term Scientific Mission visit supported by the COST action IC1302 KEYSTONE (semantic KEYword-based Search on sTructured data sOurcEs), and partially within the Transregional Collaborative Research Centre SFB/TRR 62 “A Companion-Technology for Cognitive Technical Systems” funded by the German Research Foundation (DFG) and Slovak VEGA research grant 1/0493/16.


  1. 1.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999).
  2. 2.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49, 41–46 (2006)CrossRefGoogle Scholar
  3. 3.
    Gossen, T., Nitsche, M., Haun, S., Nürnberger, A.: Data exploration for bisociative knowledge discovery: a brief overview of tools and evaluation methods. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS (LNAI), vol. 7250, pp. 287–300. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  4. 4.
    Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Set. Syst. 160, 130–144 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Pocs, J.: Note on generating fuzzy concept lattices via Galois connections. Inf. Sci. 185(1), 128–136 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Antoni, L., Krajči, S., Krídlo, O., Macek, B., Pisková, L.: On heterogeneous formal contexts. Fuzzy Set. Syst. 234, 22–33 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Pócs, J., Pócsová, J.: Basic theorem as representation of heterogeneous concept lattices. Front. Comput. Sci. 9(4), 636–642 (2015)CrossRefGoogle Scholar
  8. 8.
    Krajči, S.: Cluster based efficient generation of fuzzy concepts. Neural Netw. World 13(5), 521–530 (2003)Google Scholar
  9. 9.
    Butka, P., Pocs, J.: Generalization of one-sided concept lattices. Comput. Inform. 32(2), 355–370 (2013)MathSciNetGoogle Scholar
  10. 10.
    Kumar, C.A., Srinivas, S.: Concept lattice reduction using fuzzy K-Means clustering. Expert Syst. Appl. 37(3), 2696–2704 (2010)CrossRefGoogle Scholar
  11. 11.
    Antoni, L., Krajči, S., Krídlo, O.: On stability of fuzzy formal concepts over randomized one-sided formal context. Fuzzy Set. Syst. 333, 36–53 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kardoš, F., Pócs, J., Pócsová, J.: On concept reduction based on some graph properties. Knowl. Based Syst. 93, 67–74 (2016)CrossRefGoogle Scholar
  13. 13.
    Butka, P., Pócs, J., Pócsová, J.: Reduction of concepts from generalized one-sided concept lattice based on subsets quality measure. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds.) New Research in Multimedia and Internet Systems. AISC, vol. 314, pp. 101–111. Springer, Cham (2015). Google Scholar
  14. 14.
    Butka, P., Pócs, J., Pócsová, J.: On intent stability index for one-sided concept lattices. In: Proceedings of 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2015), pp. 79–84 (2015)Google Scholar
  15. 15.
    Butka, P., Pócs, J., Pócsová, J.: Two-step reduction of GOSCL based on subsets quality measure and stability index. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds.) Multimedia and Network Information Systems. AISC, vol. 506, pp. 419–429. Springer, Cham (2017). CrossRefGoogle Scholar
  16. 16.
    Smatana, M., Butka, P., Cöveková, L.: Tree based reduction of concept lattices based on conceptual indexes. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology – ISAT 2016 – Part I. AISC, vol. 521, pp. 211–220. Springer, Cham (2017). Google Scholar
  17. 17.
    Haun, S., Nürnberger, A., Kötter, T., Thiel, K., Berthold, M.R.: CET: a tool for creative exploration of graphs. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 587–590. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  18. 18.
    Butka, P., Low, T., Kotzyba, M., Haun, S., Nurnberger, A.: FCA-supported exploratory web search. In: 1st International Symposium on Companion-Technology (ISCT 2015), pp. 131–136 (2015)Google Scholar
  19. 19.
    Poelmans, J., Ignatov, D.I., Viaene, S., Dedene, G., Kuznetsov, S.O.: Text mining scientific papers: a survey on FCA-based information retrieval research. In: Perner, P. (ed.) ICDM 2012. LNCS (LNAI), vol. 7377, pp. 273–287. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  20. 20.
    Carpineto, C., Romano, G.: Exploiting the potential of concept lattices for information retrieval with CREDO. J. Univ. Comput. 10(8), 985–1013 (2004)zbMATHGoogle Scholar
  21. 21.
    Nauer, E., Toussaint, Y.: CreChainDo: an iterative and interactive Web information retrieval system based on lattices. Int. J. Gen. Syst. 38(4), 363–378 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    Spyratos, N., Meghini, C.: Preference-based query tuning through refinement/enlargement in a formal context. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp. 278–293. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  23. 23.
    Butka, P., Pócsová, J., Pócs, J.: A proposal of the information retrieval system based on the generalized one-sided concept lattices. In: Precup, R.E., Kovács, S., Preitl, S., Petriu, E. (eds.) Applied Computational Intelligence in Engineering and Information Technology. Topics in Intelligent Engineering and Informatics, vol. 1, pp. 59–70. Springer, Heidelberg (2012). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and InformaticsTechnical University of KosiceKosiceSlovakia
  2. 2.Data and Knowledge Engineering Group, Faculty of Computer ScienceOtto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations