Advertisement

\(E_7\), \(F_4\) and Supergravity Scalar Potentials

  • Pietro Giuseppe FréEmail author
Chapter
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

As we mentioned in previous chapters, theIRexceptional Lie algebras, for long time regarded as mathematical curiosities, came to the forefront of research with the advent of supergravity.

References

  1. 1.
    E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B 159, 141–212 (1979)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    B. De Wit, H. Nicolai, N=8 supergravity with local SO(8) \(\times \) SU(8) invariance. Phys. Lett. 108B, 285 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    B. de Wit, H. Nicolai, N=8 supergravity. Nucl. Phys. B 208, 323 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    P.G.O. Freund, M.A. Rubin, Dynamics of dimensional reduction. Phys. Lett. B 97, 233–235 (1980)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    L. Castellani, R. D’Auria, P. Fré, \({\rm {SU}}(3)\otimes {\rm {SU}}(2)\otimes {\rm {U}}(1)\) from D=11 supergravity. Nucl. Phys. B 239, 610–652 (1984)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    F. Englert, Spontaneous compactification of eleven-dimensional supergravity. Phys. Lett. B 119, 339–342 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Awada, M.J. Duff, C.N. Pope, \(\cal{N}=8\) supergravity breaks down to \(\cal{N}=1\). Phys. Rev. Lett. 50, 294 (1983)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. D’Auria, P. Fré, P. Van Nieuwenhuizen, \({\cal{N}}=2\) matter coupled supergravity from compactification on a coset G/H possessing an additional killing vector. Phys. Lett. B 136, 347–353 (1984)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    L. Castellani, L.J. Romans, \(N=3\) and \(N=1\) supersymmetry in a new class of solutions for \(d=11\) supergravity. Nucl. Phys. B 238, 683–701 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    L. Castellani, L.J. Romans, N.P. Warner, A classification of compactifying solutions for D=11 supergravity. Nucl. Phys. B 241, 429–462 (1984)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. D’Auria, P. Fré, On the fermion mass-spectrum of Kaluza-Klein supergravity. Ann. Phys. 157, 1–100 (1984)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    D.Z. Freedman, H. Nicolai, Multiplet shortening in \({\rm {Osp}}(N\vert 4)\). Nucl. Phys. B 237, 342–366 (1984)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Ceresole, P. Fré, H. Nicolai, Multiplet structure and spectra of \({\cal{N}}=2\) supersymmetric compactifications. Class. Quantum Gravity 2, 133 (1985)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    A. Casher, F. Englert, H. Nicolai, M. Rooman, The mass spectrum of supergravity on the round seven sphere. Nucl. Phys. B 243, 173 (1984)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    M. Duff, B. Nilsson, C. Pope, Kaluza klein supergravity. Phys. Rep. 130, 1 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    C.M. Hull, Noncompact gaugings of \(N=8\) supergravity. Phys. Lett. 142B, 39 (1984)ADSMathSciNetGoogle Scholar
  17. 17.
    C.M. Hull, More gaugings of \(N=8\) supergravity. Phys. Lett. 148B, 297–300 (1984)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    C.M. Hull, The construction of new gauged \(N=8\) supergravities. Physica 15D, 230 (1985)ADSMathSciNetGoogle Scholar
  19. 19.
    C.M. Hull, A new gauging of \(N=8\) supergravity. Phys. Rev. D 30, 760 (1984)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    C.M. Hull, N.P. Warner, The potentials of the gauged \(N=8\) supergravity theories. Nucl. Phys. B 253, 675–686 (1985)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    C.M. Hull, N.P. Warner, The structure of the gauged \(N=8\) supergravity theories. Nucl. Phys. B 253, 650–674 (1985)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    C.M. Hull, The minimal couplings and scalar potentials of the gauged \(N=8\) supergravities. Class. Quant. Grav. 2, 343 (1985)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    J. Maldacena, The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 4, 1113–1133 (1999).  https://doi.org/10.1023/A:1026654312961 [hep-th/9711200]
  24. 24.
    R. Kallosh, A. Van Proeyen, Conformal symmetry of supergravities in AdS spaces. Phys. Rev. D 60, 026001 (1999).  https://doi.org/10.1103/PhysRevD.60.026001 [hep- th/9804099]
  25. 25.
    S. Ferrara, C. Fronsdal, A. Zaffaroni, On \({\cal{N}}=8\) supergravity in AdS\(_5\) and \({\cal{N}}=4\) superconformal Yang-Mills theory. Nucl. Phys. B 532, 153–162 (1998).  https://doi.org/10.1016/S0550-3213(98)00444-1 [hep-th/9802203]
  26. 26.
    S. Ferrara, A. Zaffaroni, Superconformal field theories, multiplet shortening, and the AdS(5) / SCFT(4) correspondence, in Conference Moshe Flato Dijon, France, September 5–8, (1999), pp. 177–188Google Scholar
  27. 27.
    S. Ferrara, M. Porrati, A. Zaffaroni, N=6 supergravity on AdS(5) and the SU(2,2/3) superconformal correspondence. Lett. Math. Phys. 47, 255–263 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    A. Ceresole, G. Dall’Agata, R. D’Auria, S. Ferrara, Spectrum of type IIB supergravity on \(AdS_5\times T^{11}\): predictions on \(\cal{N}=1\) SCFT’s. Phys. Rev. D 61, 066001 (2000). [hep-th/9905226]ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    D. Fabbri, P. Fré, L. Gualtieri, P. Termonia, \({\rm {Osp(N|4)}}\) supermultiplets as conformal superfields on \(\partial {\rm {AdS}}_4\) and the generic form of \(\cal{N}=2\), D=3 gauge theories. Class. Quantum Gravity 17, 55 (2000). [hep-th/9905134]ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    D. Fabbri, P. Fré, L. Gualtieri, C. Reina, A. Tomasiello, A. Zaffaroni, A. Zampa, 3D superconformal theories from Sasakian seven-manifolds: new non-trivial evidences for \({\rm {AdS}}_4 / {\rm {CFT}}_3\). Nucl. Phys. B, 577, 547–608 (2000). [hep- th/9907219]Google Scholar
  31. 31.
    M. Billó, D. Fabbri, P. Fré, P. Merlatti, A. Zaffaroni, Shadow multiplets in \({\rm{AdS}}_4/{\rm{CFT}}_3\) and the super-Higgs mechanism: hints of new shadow supergravities. Nucl. Phys. B 591, 139–194 (2000). [hep-th/0005220]ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    D. Fabbri, P. Fré, L. Gualtieri, P. Termonia, M-theory on \({\rm{AdS}}_4\times {\rm{M}}^{1,1,1}\): the complete \({\rm{Osp}}(2|4) \times {\rm{SU}}(3)\times {\rm{SU}}(2)\) spectrum from harmonic analysis. Nucl. Phys. B 560, 617–682 (1999). [hep-th/9903036]ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    F. Cordaro, P. Fre, L. Gualtieri, P. Termonia, M. Trigiante, N=8 gaugings revisited: an exhaustive classification. Nucl. Phys. B 532, 245–279 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    B. de Wit, H. Samtleben, M. Trigiante, On Lagrangians and gaugings of maximal supergravities. Nucl. Phys. B 655, 93–126 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    B. De Wit, H. Samtleben, M. Trigiante, Gauging maximal supergravities. Fortsch. Phys. 52, 489–496 (2004)Google Scholar
  36. 36.
    B. De Wit, H. Samtleben, M. Trigiante, The maximal D=4 supergravities. JHEP 06, 049 (2007)Google Scholar
  37. 37.
    M. Trigiante, Gauged supergravities. Phys. Rept. 680, 1–175 (2017)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    H. Samtleben, Lectures on gauged supergravity and flux compactifications. Class. Quant. Grav. 25, 214002 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    P. Fre, M. Trigiante, A. Van Proeyen, Stable de Sitter vacua from N=2 supergravity. Class. Quant. Grav. 19, 4167–4194 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    S. Ferrara, P. van Nieuwenhuizen, Noether coupling of massive gravitinos to \(N=1\) supergravity. Phys. Lett. 127B, 70–74 (1983)ADSCrossRefGoogle Scholar
  41. 41.
    M. de Roo, Gauged N=4 matter couplings. Phys. Lett. 156B, 331–334 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    S. Cecotti, L. Girardello, M. Porrati, Some features of SUSY breaking in \(N=2\) supergravity. Phys. Lett. 151B, 367–371 (1985)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    S. Ferrara, P. Fre, L. Girardello, Spontaneously broken N=3 supergravity. Nucl. Phys. B 274, 600–618 (1986)ADSCrossRefMathSciNetGoogle Scholar
  44. 44.
    YuM Zinovev, Spontaneous symmetry breaking in N=2 supergravity with matter. Int. J. Mod. Phys. A 7, 7515–7539 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    S. Ferrara, L. Girardello, M. Porrati, Minimal Higgs branch for the breaking of half of the supersymmetries in N=2 supergravity. Phys. Lett. B 366, 155–159 (1996)ADSCrossRefMathSciNetGoogle Scholar
  46. 46.
    P. Fre, L. Girardello, I. Pesando, M. Trigiante, Spontaneous N=2 -¿ N=1 local supersymmetry breaking with surviving compact gauge group. Nucl. Phys. B 493, 231–248 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    L. Girardello, M. Porrati, A. Zaffaroni, Spontaneously broken N=2 supergravity without light mirror fermions. Nucl. Phys. B 505, 272–290 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    S. Cecotti, L. Girardello, M. Porrati, Ward identities of local supersymmetry and spontaneous breaking of extended supergravity, in Johns Hopkins Workshop on Current Problems in Particle Theory 9: New Trends in Particle Theory Florence, Italy, June 5–7 (1985)Google Scholar
  49. 49.
    S. Ferrara, L. Maiani, An introduction to supersymmetry breaking in extended supergravity, in 5th SILARG Symposium on Relativity, Supersymmetry and Cosmology. Bariloche, Argentina, January 4–11, (1985), p. 349Google Scholar
  50. 50.
    M. De Roo, P. Wagemans, Partial supersymmetry breaking in \(N=4\) supergravity. Phys. Lett. B177, 352 (1986)Google Scholar
  51. 51.
    M. de Roo, P. Wagemans, Gauge matter coupling in \(N=4\) supergravity. Nucl. Phys. B 262, 644 (1985)ADSCrossRefGoogle Scholar
  52. 52.
    P.C.C. Wagemans, Aspects of N=4 supergravity. Ph.D. thesis, Groningen U (1990)Google Scholar
  53. 53.
    G. Arcioni, A. Ceresole, F. Cordaro, R. D’Auria, P. Fre, L. Gualtieri, M. Trigiante, N=8 BPS black holes with 1/2 or 1/4 supersymmetry and solvable Lie algebra decompositions. Nucl. Phys. B 542, 273–307 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fre, M. Trigiante, E(7)(7) duality, BPS black hole evolution and fixed scalars. Nucl. Phys. B 509, 463–518 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    L. Castellani, R. D’Auria, P. Fré, Supergravity and Superstrings: A Geometric Perspective, vol. 1,2,3 (World Scientific, Singapore, 1991)CrossRefzbMATHGoogle Scholar
  56. 56.
    A. Ceresole, G. Dall’Agata, S. Ferrara, M. Trigiante, A. Van Proeyen, A search for an \(\cal{N} =2 \) inflaton potential. Fortsch. Phys. 62, 584–606 (2014)ADSCrossRefzbMATHGoogle Scholar
  57. 57.
    P. Fré, A.S. Sorin, M. Trigiante, The \(c\)- map, Tits Satake subalgebras and the search for \(\cal{N}=2\) inflaton potentials. Fortsch. Phys. 63, 198–258 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    S. Ferrara, R. Kallosh, A. Linde, M. Porrati, Minimal supergravity models of inflation. Phys. Rev. D 88, 085038 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    P. Fré, A.S. Sorin, Inflation and integrable one-field cosmologies embedded in rheonomic supergravity. Fortsch. Phys. 62, 4–25 (2014)ADSCrossRefzbMATHGoogle Scholar
  60. 60.
    P. Fré, A.S. Sorin, Axial symmetric Kahler manifolds, the \(D\) -map of inflaton potentials and the Picard-Fuchs equation. Fortsch. Phys. 62, 26–77 (2014)ADSCrossRefzbMATHGoogle Scholar
  61. 61.
    S. Ferrara, R. Kallosh, A. Van Proeyen, On the supersymmetric completion of \(R+R^2\) gravity and cosmology. JHEP 11, 134 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    S. Ferrara, R. Kallosh, A. Linde, M. Porrati, Higher order corrections in minimal supergravity models of inflation. JCAP 1311, 046 (2013)ADSCrossRefMathSciNetGoogle Scholar
  63. 63.
    S. Ferrara, P. Fré, A.S. Sorin, On the topology of the inflaton field in minimal supergravity models. JHEP 04, 095 (2014)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    S. Ferrara, P. Fre, A.S. Sorin, On the Gauged Khler isometry in minimal supergravity models of inflation. Fortsch. Phys. 62, 277–349 (2014)ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. 91B, 99–102 (1980)ADSCrossRefzbMATHGoogle Scholar
  66. 66.
    P. Fayet, J. Iliopoulos, Spontaneously broken supergauge symmetries and goldstone spinors. Phys. Lett. 51B, 461–464 (1974)ADSCrossRefGoogle Scholar
  67. 67.
    R. Kallosh, A. Linde, D. Roest, Superconformal inflationary \(\alpha \) -attractors. JHEP 11, 198 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    R. Kallosh, A. Linde, D. Roest, Large field inflation and double \(\alpha \) -attractors. JHEP 08, 052 (2014)ADSCrossRefGoogle Scholar
  69. 69.
    R. Kallosh, A. Linde, D. Roest, The double attractor behavior of induced inflation. JHEP 09, 062 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Pietra MarazziItaly

Personalised recommendations