Advertisement

Black Holes and Nilpotent Orbits

  • Pietro Giuseppe FréEmail author
Chapter
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

When on September 14th 2015 the gravitational wave signal emitted 1.5 billion year ago by two coalescing black stars was detected at LIGO I and LIGO II, we not only obtained a new spectacular confirmation of General Relativity but we actually saw the dynamical process of formation of the most intriguing objects populating the Universe, namely black holes.

References

  1. 1.
    S. Ferrara, R. Kallosh, A. Strominger, N \(=\) 2 extremal black holes. Phys. Rev. D 52, 5412–5416 (1995)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D 54, 1514–1524 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996)Google Scholar
  4. 4.
    M. Bertolini, M. Trigiante, Microscopic entropy of the most general four-dimensional BPS black hole. JHEP 10, 002 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Dabholkar, Microstates of nonsupersymmetric black holes. Phys. Lett. B 402, 53–58 (1997)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Ghosh, P. Mitra, Counting of black hole microstates. Indian J. Phys. 80, 867 (2006)Google Scholar
  7. 7.
    F. Larsen, A String model of black hole microstates. Phys. Rev. D 56, 1005–1008 (1997)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.M. Maldacena, A. Strominger, E. Witten, Black hole entropy in M theory. JHEP 12, 002 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Strominger, Black hole entropy from near horizon microstates. JHEP 02, 009 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G. Gibbons, R. Kallosh, B. Kol, Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 77, 4992–4995 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    R. D’Auria, P. Fré, BPS black-holes in supergravity: duality groups, p-branes, central charges and entropy, in Classical and Quantum Black Holes, ed. by P. Fré, V. Gorini, G. Magli, U. Moschella (IOP Publishing Ltd, 1999), pp. 137–272Google Scholar
  12. 12.
    L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, Extremal black holes in supergravity. Lect. Notes Phys. 737, 661–727 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S. Bellucci, S. Ferrara, M. Gunaydin, A. Marrani, Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A 21, 5043–5098 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Bellucci, S. Ferrara, A. Marrani, On some properties of the attractor equations. Phys. Lett. B 635, 172 (2006)Google Scholar
  15. 15.
    G. Bossard, Extrenal black holes and nilpotent orbits, in Proceedings, 16th International Congress on Mathematical Physics (ICMP09) (Prague, Czech Republic, 2009)Google Scholar
  16. 16.
    G. Bossard, The extremal black holes of N \(=\) 4 supergravity from so(8,2+n) nilpotent orbits. Gen. Rel. Grav. 42, 539–565 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    G. Bossard, H. Nicolai, Multi-black holes from nilpotent lie algebra orbits. Gen. Rel. Grav. 42, 509 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    G. Bossard, H. Nicolai, K. Stelle, Universal bps structure of stationary supergravity solutions. JHEP 0907, 003 (2009)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Bossard, C. Ruef, Interacting non-BPS black holes. Gen. Rel. Grav. 44, 21 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Ceresole, S. Ferrara, A. Marrani, Small N \(=\) 2 extremal black holes in special geometry. Phys. Lett. B 693, 366–372 (2010)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Giryavets, New attractors and area codes. JHEP 0603, 020 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    K. Goldstein, N. Iizuka, R.P. Jena, S.P. Trivedi, Non-supersymmetric attractors. Phys. Rev. D 72, 124021 (2005)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    R. Kallosh, JHEP. New attractors 0512, 022 (2005)Google Scholar
  24. 24.
    R. Kallosh, N. Sivanandam, M. Soroush, The non-BPS black hole attractor equation. JHEP 0603, 060 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    P. Tripathy, S. Trivedi, Non-supersymmetric attractors in string theory. JHEP 0603, 022 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    W. Chemissany, J. Rosseel, M. Trigiante, T. Van Riet, The full integration of black hole solutions to symmetric supergravity theories. Nucl. Phys. B 830, 391 (2010)Google Scholar
  27. 27.
    W. Chemissany, P. Fre, J. Rosseel, A. Sorin, M. Trigiante, T. Van Riet, Black holes in supergravity and integrability. JHEP 2010, 080 (1009)CrossRefzbMATHGoogle Scholar
  28. 28.
    W. Chemissany, P. Fré, A. Sorin, The integration algorithm of lax equation for both generic lax matrices and generic initial conditions. Nucl. Phys. B 833, 220 (2010)Google Scholar
  29. 29.
    P. Fré, A. Sorin, The Integration Algorithm for Nilpotent Orbits of \(g/h^\star \) Lax Systems: for Extrenal Black Holes (2009)Google Scholar
  30. 30.
    P. Fré, A. Sorin, Supergravity black holes and billiards and liouville integrable structure of dual borel algebras. JHEP 03, 066 (2010)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    P. Frè, A. Sorin, M. Trigiante, Black Hole Nilpotent Orbits and Tits Satake Universality Classes (2011)Google Scholar
  32. 32.
    P. Frè, A. Sorin, M. Trigiante, Integrability of supergravity black holes and new tensor classifiers of regular and nilpotent orbits. JHEP 1204, 015 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    P. Fré, A.S. Sorin, Integrability of supergravity billiards and the generalized Toda lattice equation. Nucl. Phys. B 733, 334–355 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    A. Ceresole, G. Dall’Agata, S. Ferrara, A. Yeranyan, First order flows for N \(=\) 2 extremal black holes and duality invariants. Nucl. Phys. B 824, 239–253 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    P. G. Fré, Gravity, a Geometrical Course, vols. 1, 2 (Springer Science & Business Media, Berlin, 2012)Google Scholar
  36. 36.
    D.H. Collingwood, W.McGovern, Nilpotent Orbits in Semisimple Lie Algebras (Van Nostrand Reinhold, 1993)Google Scholar
  37. 37.
    S. Kim, J. Lindman, J. Hörnlund, J. Palmkvist, A. Virmani, Extremal solutions of the \(s^3\) model and nilpotent \(g_{2(2)}\) orbits. JHEP 2010, 072 (1008)CrossRefzbMATHGoogle Scholar
  38. 38.
    G. Bossard, Octonionic black holes. JHEP 05, 113 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    K. Behrndt, D. Lust, W. Sabra, Stationary solutions of n \(=\) 2 supergravity. Nucl. Phys. B 510, 264–288 (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Pietra MarazziItaly

Personalised recommendations