Advertisement

Special Geometries

  • Pietro Giuseppe FréEmail author
Chapter
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

Relying for a complete historical account on the tale told in the twin book (Fré, A conceptual history of symmetry from Plato to the Superworld Springer, Berlin, 2018, [1]), let us summarize the steps that led, in the 1990’s to Special Geometries.

References

  1. 1.
    P.G. Fré, A Conceptual History of Symmetry from Plato to the Superworld (Springer, Berlin, 2018)Google Scholar
  2. 2.
    S. Ferrara, D.Z. Freedman, P. van Nieuwenhuizen, P. Breitenlohner, F. Gliozzi, J. Scherk, Scalar multiplet coupled to supergravity. Phys. Rev. D 15, 1013 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    B. Zumino, Supersymmetry and Kahler manifolds. Phys. Lett. B 87, 203 (1979)Google Scholar
  4. 4.
    E. Cremmer, C. Kounnas, A. Van Proeyen, J.P. Derendinger, S. Ferrara, B. De Wit, L. Girardello, Vector multiplets coupled to N \(=\) 2 supergravity: superHiggs effect, flat potentials and geometric structure. Nucl. Phys. B 250, 385–426 (1985)Google Scholar
  5. 5.
    B. De Wit, P.G. Lauwers, R. Philippe, S.Q. Su, A. Van Proeyen, Gauge and matter fields coupled to N \(=\) 2 supergravity. Phys. Lett. B 134, 37–43 (1984)Google Scholar
  6. 6.
    B. De Wit, A. Van Proeyen, Potentials and symmetries of general gauged N \(=\) 2 supergravity: Yang-Mills models. Nucl. Phys. B 245, 89–117 (1984)Google Scholar
  7. 7.
    E. Cremmer, A. Van Proeyen, Classification of Kahler manifolds in N \(=\) 2 vector multiplet supergravity couplings. Class. Quantum Gravity 2, 445 (1985)Google Scholar
  8. 8.
    A. Strominger, Special geometry. Commun. Math. Phys. 133, 163–180 (1990)Google Scholar
  9. 9.
    L. Castellani, R. D’Auria, S. Ferrara, Special geometry without special coordinates. Class. Quantum Gravity 7, 1767–1790 (1990)Google Scholar
  10. 10.
    L. Castellani, R. D’Auria, S. Ferrara, Special Kahler geometry: an intrinsic formulation from N \(=\) 2 space-time supersymmetry. Phys. Lett. B 241, 57–62 (1990)Google Scholar
  11. 11.
    R. D’Auria, S. Ferrara, P. Fré, Special and quaternionic isometries: general couplings in n \(=\) 2 supergravity and the scalar potential, Nucl. Phys. B 359, 705–740 (1991)Google Scholar
  12. 12.
    B. De Wit, A. Van Proeyen, Broken sigma model isometries in very special geometry. Phys. Lett. B 293, 94–99 (1992)Google Scholar
  13. 13.
    B. De Wit, A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces. Commun. Math. Phys. 149, 307–334 (1992)Google Scholar
  14. 14.
    B. De Wit, F. Vanderseypen, A. Van Proeyen, Symmetry structure of special geometries. Nucl. Phys. B 400, 463–524 (1993)Google Scholar
  15. 15.
    S. Cecotti, Homogeneous Kahler manifolds and \(T\) algebras in N \(=\) 2 supergravity and superstrings. Commun. Math. Phys. 124, 23–55 (1989)Google Scholar
  16. 16.
    R. D’Auria, S. Ferrara, M. Trigiante, C - map, very special quaternionic geometry and dual Kahler spaces. Phys. Lett. B 587, 138–142 (2004)Google Scholar
  17. 17.
    S. Ferrara, S. Sabharwal, Quaternionic manifolds for type II superstring Vacua of Calabi-Yau spaces. Nucl. Phys. B 332, 317–332 (1990)Google Scholar
  18. 18.
    D. Alekseevsky, Classification of quaternionic spaces with a transitive solvable group of motions. Math. USSR Izvestija 9, 297–339 (1975)Google Scholar
  19. 19.
    V. Cortés, Alekseevskian spaces. Differ. Geom. Appl. 6, 129–168 (1996)Google Scholar
  20. 20.
    P. Fré, A.S. Sorin, M. Trigiante, The \(c\)-map, Tits Satake subalgebras and the search for \(\cal{N}=2\) inflaton potentials. Fortsch. Phys. 63, 198–258 (2015)Google Scholar
  21. 21.
    P. Fre, Lectures on special Kahler geometry and electric - magnetic duality rotations, Nucl. Phys. Proc. Suppl. 45BC, 59–114 (1996)Google Scholar
  22. 22.
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre, T. Magri, N \(=\) 2 supergravity and N \(=\) 2 super Yang–Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111–189 (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Pietra MarazziItaly

Personalised recommendations