Skip to main content

Active Interrogation Probe Technologies

  • Chapter
  • First Online:
Book cover Active Interrogation in Nuclear Security
  • 710 Accesses

Abstract

One key component of any active interrogation (AI) system that is not present in passive measurements is the source of probing radiation. This chapter introduces the physical principles of operation of linear accelerators, cyclotrons, and novel laser-driven sources, along with the review of radioisotope sources and the use of natural radiation for AI. Some of the critical parts of these technologies are discussed in more detail. In addition, the common characteristics of various probe technologies are provided.

Section 5.4 was prepared by Cameron Geddes (Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA), e-mail: CGRGeddes@lbl.gov

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Bertozzi, W. Franklin, S. Korbly, R.J. Ledoux, R. Niyazov, D.R. Swenson, A. Klimenko, Int. J. Modern Phys. A 26(10–11), 1713 (2011). https://doi.org/10.1142/S0217751X11053122. International Conference on Fixed Field Alternating Gradient Accelerators (FFAG 09), Batavia, Sep 21–25, 2009

  2. A. Jason, H. Miyadera, P. Turchi, SNM detection by active interrogation. LA-UR-10-04398, Los Alamos National Laboratory (2010)

    Google Scholar 

  3. E.I. Simakov, H.L. Andrews, M.J. Herman, K.M. Hubbard, E. Weis, vol. 1812 (2017), p. 060010. http://aip.scitation.org/doi/abs/10.1063/1.4975877

  4. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C.E. Hamilton, B.M. Hegelich, R.P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J.L. Tybo, F. Wagner, S.A. Wender, C.H. Wilde, G.A. Wurden, Phys. Rev. Lett. 110, 044802 (2013). https://link.aps.org/doi/10.1103/PhysRevLett.110.044802

  5. I. Hofmann, Phys. Rev. ST Accel. Beams 16(4), 041302 (2013). https://doi.org/10.1103/PhysRevSTAB.16.041302

  6. M. Schollmeier, S. Becker, M. Geißel, K.A. Flippo, A. Blažević, S.A. Gaillard, D.C. Gautier, F. Grüner, K. Harres, M. Kimmel, F. Nürnberg, P. Rambo, U. Schramm, J. Schreiber, J. Schütrumpf, J. Schwarz, N.A. Tahir, B. Atherton, D. Habs, B.M. Hegelich, M. Roth, Phys. Rev. Lett. 101, 055004 (2008). https://link.aps.org/doi/10.1103/PhysRevLett.101.055004

  7. J.C. Fernandez, in FESAC Workshop on Scientific Opportunities in High Energy Density Laboratory Plasma Physics, Washington, DC, 2008

    Google Scholar 

  8. V.A. Dolgashev, AIP Conf. Proc. 1507(1), 76 (2012). http://aip.scitation.org/doi/abs/10.1063/1.4773679

  9. R.A. Marsh, F. Albert, S. Anderson, C. Barty, D. Gibson, F. Hartemann, S. Wu, Ultracompact accelerator technology for a next-generation gamma-ray source, in Proceedings of the 2012 International Particle Accelerator Conference (IPAC 2012), New Orleans, 20-25 May 2012, pp. 3190–3194

    Google Scholar 

  10. O. Williams, Basic Theory of Inverse Compton (Thomson) Scattering and Conceptual Design of X-Ray Source using the PEGASUS Linac at UCLA and a Tabletop Terawatt Laser. Physics 199 (UCLA Particle Beam Physics Lab, UCLA Department of Physics and Astronomy, Winter 2003)

    Google Scholar 

  11. T. Wangler, RF Linear Accelerators. Physics Textbook (Wiley, New York, 2008). https://books.google.com/books?id=5EO4_nyndUMC

  12. C. Tang, H. Chen, Q. Jin, T. Du, C. Cheng, D. Tong, Y. Lin, Y. Liu, in International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators (International Atomic Energy Agency, Vienna, 2009). INIS-XA-09N0647

    Google Scholar 

  13. D.C. Faircloth, in Proceedings, CAS - CERN Accelerator School: Ion Sources: Senec, Slovakia, May 29–June 8, 2012, pp. 285–310 (2013). https://doi.org/10.5170/CERN-2013-007.285. https://inspirehep.net/record/1288541/files/arXiv:1404.0944.pdf

  14. M. Reiser, Theory and Design of Charged Particle Beams. Wiley Series in Beam Physics and Accelerator Technology (Wiley, New York, 2008). https://books.google.com/books?id=tqtnXnhUuvIC

  15. T. Gozani, J. Stevenson, M.J. King, Nucl. Instrum. Methods Phys. Res. Sect. A 652(1), 334 (2011). http://dx.doi.org/10.1016/j.nima.2011.01.029. http://www.sciencedirect.com/science/article/pii/S0168900211000805. Symposium on Radiation Measurements and Applications (SORMA) XII 2010

  16. J. Wang, X-band accelerator structures R&D at SLAC. SLAC/LLNL Discussion (2011)

    Google Scholar 

  17. M.S. Livingston, J.P. Blewett, Iris-loaded linac structures, in Particle Accelerators (McGraw-Hill Book Company, New York, 1962), p. 324

    Google Scholar 

  18. J.K. Sekutowicz, in Proceedings, CAS - CERN Accelerator School: RF for Accelerators, Ebeltoft, 8–17 Jun 2010 (2012). https://inspirehep.net/record/1084441/files/arXiv:1201.2598.pdf

  19. E. Colby. Klystrons. US Particle Accelerator School, Vanderbilt University (2010)

    Google Scholar 

  20. M. Vretenar, A. Dallocchio, V. Dimov, M. Garlaschè, A. Grudiev, A. Lombardi, S. Mathot, E. Montesinos, M. Timmins, in 27th Linear Accelerator Conference (Geneva, 2014), p. THPP040. 4 p. https://cds.cern.ch/record/2062619

  21. S. Jolly, An intra-pulse fast feedback system for a future linear collider. Ph.D. thesis, Exeter College, University of Oxford, Oxford, 2003

    Google Scholar 

  22. Computer Simulation Technology (CST), www.cst.com

  23. S. Ramo, J. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994). https://books.google.com/books?id=lIFkQgAACAAJ

  24. G. Ciovati, in Proceedings, CAS - CERN Accelerator School : Course on Superconductivity for Accelerators (CAS 2013), Erice, April 24–May 4, 2013 (2014), pp. 57–75. https://doi.org/10.5170/CERN-2014-005.57. https://inspirehep.net/record/1342040/files/arXiv:1501.07398.pdf

  25. A. Chao, M. Tigner, Handbook of Accelerator Physics and Engineering (World Scientific, Singapore, 1999). https://books.google.com/books?id=Z3J4SjftF1YC

    Book  Google Scholar 

  26. C. Boulware, Introduction to the physics of high-quality electron beams. PITZ Physics Lecture for Summer Students (2007)

    Google Scholar 

  27. G.J. Caporaso, eConf C00082, WE101 (2000) [658(2000)]

    Google Scholar 

  28. S. Sampayan, G. Caporaso, Y. Chen, S. Falabella, G. Guethlein, J. Harris, S. Hawkins, C. Holmes, M. Krogh, S. Nelson, W. Nunnally, A. Paul, B. Poole, M. Rhodes, D. Sanders, K. Selenes, K. Shaklee, S. Sitaraman, J. Sullivan, L. Wang, J. Watson, Nucl. Instrum. Methods Phys. Res. Sect. B 261(1), 281 (2007). http://dx.doi.org/10.1016/j.nimb.2007.04.244. http://www.sciencedirect.com/science/article/pii/S0168583X07007380. The Application of Accelerators in Research and Industry

  29. S. Boucher, R.B. Agustsson, P. Frigola, A.Y. Murokh, M. Ruelas, F.H. O’Shea, J.B. Rosenzweig, G. Travish, Conf. Proc. C0806233, TUPP150 (2008)

    Google Scholar 

  30. H.L. Luo, Y.C. Xu, X.Q. Wang, H.L. Xu, Chin. Phys. C37, 097001 (2013). https://doi.org/10.1088/1674-1137/37/9/097001

  31. J.M. Potter, D. Schwellenbach, A. Meidinger, 525, 178–183 (2013). http://aip.scitation.org/doi/abs/10.1063/1.4802315

  32. D.E. Nagle, E.A. Knapp, B.C. Knapp, Rev. Sci. Instrum. 38(11), 1583 (1967). http://dx.doi.org/10.1063/1.1720608

  33. G.E. Dale, H.C. Kirbie, W.B. Haynes, C.E. Heath, T.A. Lopez, F.P. Romero, R.M. Wheat, in 2005 IEEE Pulsed Power Conference (2005), pp. 1211–1214. https://doi.org/10.1109/PPC.2005.300572

  34. W. Leemans, in Proceedings of IPAC, New Orleans, 2012

    Google Scholar 

  35. T.B. Zhang, J.L. Hirshfield, T.C. Marshall, B. Hafizi, Phys. Rev. E 56, 4647 (1997). https://link.aps.org/doi/10.1103/PhysRevE.56.4647

    Article  ADS  Google Scholar 

  36. E.A. Peralta, K. Soong, R.J. England, E.R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K.J. Leedle, D. Walz, E.B. Sozer, B. Cowan, B. Schwartz, G. Travish, R.L. Byer, Nature 503(7474), 91 (2013). http://dx.doi.org/10.1038/nature12664

    Article  ADS  Google Scholar 

  37. M. Uesaka, H. Kobayashi, Compact Neutron Sources for Energy and Security (World Scientific Publishing Co, Singapore, 2015), pp. 181–207. https://doi.org/10.1142/9789813108905_0010

    Chapter  Google Scholar 

  38. A. Murata, S. Ikeda, N. Hayashizaki, Nucl. Instrum. Methods Phys. Res. B 406, 260 (2017). http://dx.doi.org/10.1016/j.nimb.2016.12.024. http://www.sciencedirect.com/science/article/pii/S0168583X16305626. Proceedings of the 12th European Conference on Accelerators in Applied Research and Technology (ECAART12)

  39. D.L. Chichester, J.D. Simpson, Compact neutron generators. The Industrial Physicist, 22-25 (December 2003/January 2004)

    Google Scholar 

  40. M. Rickey, R. Smythe, Nucl. Instrum. Methods 18, 66 (1962). http://dx.doi.org/10.1016/S0029-554X(62)80010-X. http://www.sciencedirect.com/science/article/pii/S0029554X6280010X

  41. R. Lanza, in IAEA RCM, Neutron Based Techniques for the Detection of Illicit Materials and Explosives, Johannesburg, 2009

    Google Scholar 

  42. I.M. Kapchinskij, I.M. Teplyakov, Prib. Tekh. Eksp 4, 17 (1970)

    Google Scholar 

  43. R.H. Stokes, K.R. Crandall, J.E. Stovall, D.A. Swenson, IEEE Trans. Nucl. Sci. 26(3), 3469 (1979). https://doi.org/10.1109/TNS.1979.4330069

    Article  ADS  Google Scholar 

  44. B. Koubek, J. Schmidt, A. Schempp, L. Groening, in Proceedings of IPAC 2011, San Sebastian, 2011, pp. 2568–2570

    Google Scholar 

  45. T.J.T. Kwan, R.E. Morgado, T.S.F. Wang, B. Vodolaga, V. Terekhin, L.M. Onischenko, S.B. Vorozhtsov, E.V. Samsonov, A.S. Vorozhtsov, Y.G. Alenitsky, E.E. Perpelkin, A.A. Glazov, D.L. Novikov, V. Parkhomchuk, V. Reva, V. Vostrikov, V.A. Mashinin, S.N. Fedotov, S.A. Minayev, Rev. Sci. Instrum. 81(10), 103304 (2010). http://dx.doi.org/10.1063/1.3488354

  46. R. Duperrier, R. Ferdinand, J.M. Lagniel, N. Pichoff, Proceedings of the 20th International Linear Accelerator Conference (Linac 2000), Monterey, 21-25 August 2000, pp. 839–842

    Google Scholar 

  47. J.D. Schneider, in Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366), vol. 1 (1999), pp. 503–507. https://doi.org/10.1109/PAC.1999.795744

  48. M. Kaushik, L. Joshi, J. Electromagnetic Waves Appl. 29(15), 2027 (2015). http://dx.doi.org/10.1080/09205071.2015.1074874

  49. M. Heron, A miniature accelerator to treat cancer. https://home.cern/about/updates/2015/07/miniature-accelerator-treat-cancer; http://accelconf.web.cern.ch/AccelConf/linac2016/talks/th1a06_talk.pdf

  50. R. Morgado, G. Arnone, C. Cappiello, Technical Report LA-UR-96-1206, Los Alamos National Laboratory (1996)

    Google Scholar 

  51. P. Kerr, M. Rowland, D. Dietrich, W. Stoeffl, B. Wheeler, L. Nakae, D. Howard, C. Hagmann, J. Newby, R. Porter, Nucl. Instrum. Methods Phys. Res. B 261(1), 347 (2007). http://dx.doi.org/10.1016/j.nimb.2007.04.190. http://www.sciencedirect.com/science/article/pii/S0168583X07009202. The Application of Accelerators in Research and Industry

  52. J.W. Staples, M.D. Hoff, J.W. Kwan, D. Li, B.A. Ludewigt, A. Ratti, S.P. Virostek, R.P.W. Lbnl, in Proceedings of LINAC 2006, Knoxville, 2006, pp. 253–255

    Google Scholar 

  53. C.L. Morris, Active interrogation using energetic protons. Technical Report LA-UR-10-04680, Los Alamos National Laboratory (2010)

    Google Scholar 

  54. R.W. Garnett, in Proceedings of 28th Linear Accelerator Conference (LINAC16), East Lansing, 2016

    Google Scholar 

  55. R.C. Runkle, D.L. Chichester, S.J. Thompson, Nucl. Instrum. Methods Phys. Res., Sect. A 663(1), 75 (2012)

    Google Scholar 

  56. C. Geddes, B. Ludewigt, J. Valentine, B. Quiter, M.A. Descalle, G. Warren, M. Kinlaw, S. Thompson, D. Chichester, C. Miller, S. Pozzi, Impact of monoenergetic photon sources on nonproliferation applications. Technical Report, DNN R & D Final Project Report (2017). http://www.osti.gov/scitech/servlets/purl/1376659

  57. W. Leemans, E. Esarey, Phys. Today 62(3), 44 (2009). https://doi.org/10.1063/1.3099645

  58. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  59. W.P. Leemans, E. Esarey, J. van Tilborg, P.A. Michel, C.B. Schroeder, C. Toth, C.G.R. Geddes, B.A. Shadwick, IEEE Trans. Plasma Sci. 33(1), 8 (2005)

    Article  ADS  Google Scholar 

  60. C. Geddes, S. Rykovanov, N. Matlis, S. Steinke, J.L. Vay, E. Esarey, B. Ludewigt, K. Nakamura, B. Quiter, C. Schroeder, C. Toth, W. Leemans, Nucl. Instrum. Methods Phys. Res. B 350, 116 (2015)

    Google Scholar 

  61. V. Litvinenko, J. Madey, Nucl. Instrum. Methods Phys. Res. Sect. A 375(1–3), 580 (1996)

    Google Scholar 

  62. O. Tesileanu, D. Ursescu, R. Dabu, N.V. Zamfir, J. Phys. Conf. Ser. 420, 1–8 (2013)

    Google Scholar 

  63. R. Hajima, T. Hayakawa, T. Shizuma, C. Angell, R. Nagai, N. Nishimori, M. Sawamura, S. Matsuba, A. Kosuge, M. Mori, M. Seya, Eur. Phys. J. Spec. Top. 223, 1229 (2014)

    Article  ADS  Google Scholar 

  64. W.P. Leemans, R.W. Schoenlein, P. Volfbeyn, A.H. Chin, T.E. Glover, P. Balling, M. Zolotorev, K.J. Kim, S. Chattopadhyay, C.V. Shank, Phys. Rev. Lett. 77(20), 4182 (1996)

    Article  ADS  Google Scholar 

  65. A. Jochmann et al., Phys. Rev. Lett. 111, 114803 (2013)

    Google Scholar 

  66. J.M. Hall, V.A. Semenov, F. Albert, C.P.J. Barty, in Proceedings of 52nd Annual Meeting of the Institute of Nuclear Material Management, Palm Desert, 2011

    Google Scholar 

  67. A. Gehring et al., Proc. SPIE 9215 (2014)

    Google Scholar 

  68. Y. Zhang et al., in Proceedings of IEEE NSS (2016)

    Google Scholar 

  69. C.R. Hatcher et al., Nucl. Inst. Methods 14, 337 (1961)

    Google Scholar 

  70. L. Campbell, J. Fast, R. Wittman, R. Abrams, A. Afanasev, C. Ankenbrandt, K. Beard, G. Flanagan, R. Johnson, C. Yoshikawa, M. Popovic, Monoenergetic photon beams based on positron annihilation. Technical Report, Pacific Northwest National Laboratory, Richland, PNNL-22882 (2013). http://www.osti.gov/scitech/servlets/purl/1376659

  71. T. Taddeucci, R. Sheffield, Neutron and gamma-ray production with low-energy beams. Technical Report, Los Alamos National Laboratory Report LA-UR-07-2724 (2010)

    Google Scholar 

  72. T. Kwan et al., Rev. Sci. Instrum. 81, 1033034 (2010)

    Google Scholar 

  73. B. O’Day, Z. Hartwig, R. Lanza, A. Danagoulian, Nucl. Instrum. Methods A 832, 68 (2016)

    Google Scholar 

  74. F. Albert, S.G. Anderson, D.J. Gibson, C.A. Hagmann, M.S. Johnson, M. Messerly, V. Semenov, M.Y. Shverdin, B. Rusnak, A.M. Tremaine, F.V. Hartemann, C.W. Siders, D.P. McNabb, C.P.J. Barty, Phys. Rev. Spec. Top. - Accel. Beams 13, 070704 (2010)

    Google Scholar 

  75. C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431(7008), 538 (2004)

    Article  ADS  Google Scholar 

  76. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, Nature 431(7008), 541 (2004)

    Article  ADS  Google Scholar 

  77. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Nature 431(7008), 535 (2004)

    Article  ADS  Google Scholar 

  78. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Tóth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, Nat. Phys. 2, 696 (2006)

    Google Scholar 

  79. W.P. Leemans, A.J. Gonsalves, H.S. Mao, K. Nakamura, C. Benedetti, C.B. Schroeder, C. Tóth, J. Daniels, D.E. Mittelberger, S.S. Bulanov, J.L. Vay, C.G.R. Geddes, E. Esarey, Phys. Rev. Lett. 113, 245002 (2014)

    Google Scholar 

  80. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Nature 444(7120), 737 (2006)

    Article  ADS  Google Scholar 

  81. T.P.A. Ibbotson, N. Bourgeois, T.P. Rowlands-Rees, L.S. Caballero, S.I. Bajlekov, P.A. Walker, S. Kneip, S.P.D. Mangles, S.R. Nagel, C.A.J. Palmer, N. Delerue, G. Doucas, D. Urner, O. Chekhlov, R.J. Clarke, E. Divall, K. Ertel, P.S. Foster, S.J. Hawkes, C.J. Hooker, B. Parry, P.P. Rajeev, M.J.V. Streeter, S.M. Hooker, Phys. Rev. ST Accel. Beams 13, 031301 (2010)

    Google Scholar 

  82. S. Banerjee, S.Y. Kalmykov, N.D. Powers, G. Golovin, V. Ramanathan, N.J. Cunningham, K.J. Brown, S. Chen, I. Ghebregziabher, B.A. Shadwick, D.P. Umstadter, Phys. Rev. Spec. Top. Accel Beams 16, 031302 (2013)

    Google Scholar 

  83. G.R. Plateau, C.G.R. Geddes, D.B. Thorn, M. Chen, C. Benedetti, E. Esarey, A.J. Gonsalves, N.H. Matlis, K. Nakamura, C.B. Schroeder, S. Shiraishi, T. Sokollik, J. van Tilborg, Cs. Tóth, S. Trotsenko, T.S. Kim, M. Battaglia, T. Stöhlker, W.P. Leemans, Phys. Rev. Lett. 109, 064802 (2012)

    Google Scholar 

  84. R. Weingartner, S. Raith, A. Popp, S. Chou, J. Wenz, K. Khrennikov, M. Heigoldt, A.R. Maier, N. Kajumba, M. Fuchs, B. Zeitler, F. Krausz, S. Karsch, F. Grüner, Phys. Rev. ST Accel. Beams 15, 111302 (2012). http://link.aps.org/doi/10.1103/PhysRevSTAB.15.111302

  85. Y. Ding, A. Brachmann, F.J. Decker, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, A. Miahnahri, H.D. Nuhn, D. Ratner, J. Turner, J. Welch, W. White, J. Wu, Phys. Rev. Lett. 102, 254801 (2009)

    Google Scholar 

  86. H. Schwoerer, B. Liesfeld, H.P. Schlenvoigt, K.U. Amthor, R. Sauerbrey, Phys. Rev. Lett. 96(1), 014802 (2006)

    Google Scholar 

  87. K. Phuoc et al., Nat. Photon. 6, 308 (2012)

    Google Scholar 

  88. S. Chen et al., Phys. Rev. Lett. 110, 155003 (2013)

    Google Scholar 

  89. K. Khrennikov, J. Wenz, A. Buck, J. Xu, M. Heigoldt, L. Veisz, S. Karsch, Phys. Rev. Lett. 114, 195003 (2015)

    Google Scholar 

  90. H.E. Tsai, X. Wang1, J.M. Shaw, Z. Li, A.V. Arefiev, X. Zhang, R. Zgadzaj, W. Henderson, V. Khudik, G. Shvets, M.C. Downer, Phys. Plasmas 22, 023106 (2015)

    Google Scholar 

  91. G. Golovin, S. Banerjee, C. Liu, S. Chen, J. Zhang, B. Zhao, P. Zhang, M. Veale, M. Wilson, P. Seller, D. Umstadter, Nat. Sci. Rep. 6, 24622 (2016)

    Google Scholar 

  92. M. Chen, Z.M. Sheng, Y.Y. Ma, J. Zhang, J. Appl. Phys. 99(5), 056109 (2006)

    Google Scholar 

  93. C. McGuffey, A.G.R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F.J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V.Y. Bychenkov, I.V. Glazyrin, A.V. Karpeev, Phys. Rev. Lett. 104(2), 025004 (2010)

    Google Scholar 

  94. S. Steinke, J. van Tilborg, C. Benedetti, C.G.R. Geddes, C.B. Schroeder, J. Daniels, K.K. Swanson, A.J. Gonsalves, K. Nakamura, N.H. Matlis, B.H. Shaw, E. Esarey, W.P. Leemans, Nature 530, 190 (2016)

    Article  ADS  Google Scholar 

  95. S. Bulanov, N. Naumova, F. Pegoraro, J. Sakai, Phys. Rev. E 58(5), R5257 (1998)

    Article  ADS  Google Scholar 

  96. C.G.R. Geddes, K. Nakamura, G.R. Plateau, Cs. Tóth, E. Cormier-Michel, E. Esarey, C.B. Schroeder, J.R. Cary, W.P. Leemans, Phys. Rev. Lett. 100(21), 215004 (2008)

    Google Scholar 

  97. A.J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C.B. Schroeder, C.G.R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth, W.P. Leemans, Nat. Phys. 7, 862 (2011)

    Google Scholar 

  98. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, V. Malka, Phys. Plasmas 17(8), 083107 (2010)

    Google Scholar 

  99. E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting, P. Sprangle, Phys. Rev. Lett. 79(14), 2682 (1997)

    Article  ADS  Google Scholar 

  100. C. Lin, J. van Tilborg, K. Nakamura, A.J. Gonsalves, N.H. Matlis, T. Sokollik, S. Shiraishi, J. Osterhoff, C. Benedetti, C.B. Schroeder, C. Tóth, E. Esarey, W.P. Leemans, Phys. Rev. Lett. 108, 094801 (2012)

    Google Scholar 

  101. C. Thaury, E. Guillaume, A. Dopp1, R. Lehe, A. Lifschitz, K.T. Phuoc, J. Gautier, J.P. Goddet, A. Tafzi, A. Flacco, F. Tissandier, S. Sebban, A. Rousse, V. Malka, Nat. Commun. 6, 6860 (2015)

    Google Scholar 

  102. S.G. Rykovanov, C.G.R. Geddes, J.L. Vay, C.B. Schroeder, E. Esarey, W.P. Leemans, J. Phys. B 47, 234013 (2014)

    Google Scholar 

  103. T.C. Chiou, T. Katsouleas, C. Decker, W.B. Mori, G. Shvets, J.S. Wurtele, Phys. Plasmas 2, 310 (1995)

    Google Scholar 

  104. C.B. Schroeder, J.S. Wurtele, D.H. Whittum, Phys. Rev. Lett. 82(6), 1177 (1999)

    Article  ADS  Google Scholar 

  105. F. Hartemann, A. Troha, N. Luhmann, Z. Toffano, Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 54(3), 2956 (1996)

    Article  ADS  Google Scholar 

  106. I. Ghebregziabher, B.A. Shadwick, D. Umstadter, Phys. Rev. Spec. Top. Accel. Beams 16(3), 030705 (2013)

    Google Scholar 

  107. S.G. Rykovanov, C.G.R. Geddes, C.B. Schroeder, E. Esarey, W.P. Leemans, Phys. Rev. Accel. Beams 19, 030701 (2016). http://link.aps.org/doi/10.1103/PhysRevAccelBeams.19.030701

  108. B. Terzic, K. Deitrick, A.S. Hofler, G. Krafft, Phys. Rev. Lett. 112(7), 074801 (2014)

    Google Scholar 

  109. A. Bonatto, C.B. Schroeder, J.L. Vay, C.G.R. Geddes, C. Benedetti, E. Esarey, W.P. Leemans, Phys. Plasmas 22, 083106 (2015)

    Article  ADS  Google Scholar 

  110. W. Leemans et al., ICFA beam dynamics newsletter 56 (2011)

    Google Scholar 

  111. S.P. Hatchett, C.G. Brown, T.E. Cowan, E.A. Henry, J.S. Johnson, M.H. Key, J.A. Koch, A.B. Langdon, B.F. Lasinski, R.W. Lee, A.J. Mackinnon, D.M. Pennington, M.D. Perry, T.W. Phillips, M. Roth, T.C. Sangster, M.S. Singh, R.A. Snavely, M.A. Stoyer, S.C. Wilks, K. Yasuike, Phys. Plasmas 7(5), 2076 (2000)

    Article  ADS  Google Scholar 

  112. D.P. Higginson et al., Phys. Plasmas 17, 100701 (2010)

    Article  ADS  Google Scholar 

  113. M. Roth et al., Phys. Rev. Lett. 110, 044802 (2013)

    Article  ADS  Google Scholar 

  114. L. Yin, B.J. Albright, B.M. Hegelich, J.C. Fernandez, Laser Part. Beams 24, 291 (2006)

    Article  ADS  Google Scholar 

  115. C. Zulick, F. Dollar, V. Chvykov, J. Davis, G. Kalinchenko, A. Maksimchuk, G.M. Petrov, A. Raymond, A.G.R. Thomas, L. Willingale, V. Yanovsky, K. Krushelnick, Appl. Phys. Lett. 102(12), 124101 (2013). http://dx.doi.org/10.1063/1.4795723

    Article  ADS  Google Scholar 

  116. T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  117. I. Pomerantz, E. McCary, A.R. Meadows, A. Arefiev, A.C. Bernstein, C. Chester, J. Cortez, M.E. Donovan, G. Dyer, E.W. Gaul, D. Hamilton, D. Kuk, A.C. Lestrade, C. Wang, T. Ditmire, B.M. Hegelich, Phys. Rev. Lett. 113, 184801 (2014). https://link.aps.org/doi/10.1103/PhysRevLett.113.184801

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Sect. 5.4 was supported by the U.S. Dept. of Energy National Nuclear Security administration Defense Nuclear Nonproliferation R and D (NA-22), and by the Office of Science Office of High Energy Physics, under Contract No. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory. The simulations used the computational facilities at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would like to acknowledge contributions by Markus Roth, Hai-En Tsai, Jeroen van Tilborg, Sven Steinke, Csaba Toth, Jean-Luc Vay, Carl Schroeder, Eric Esarey, Kei Nakamura, Bernhard Ludewigt, Brian Quiter, John Valentine, Marie-Anne Descalle, Matt Kinalw, David Chichester, Glen Warren, Cameron Miller, Sara Pozzi, and Wim Leemans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Garnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garnett, R. (2018). Active Interrogation Probe Technologies. In: Jovanovic, I., Erickson, A. (eds) Active Interrogation in Nuclear Security. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-74467-4_5

Download citation

Publish with us

Policies and ethics