Biohydrogen Production from Lignocellulosic Feedstocks Using Extremophiles

  • Raman Rao
  • Rajesh K. Sani
  • Sachin KumarEmail author


Due to the impact of global warming and increasing cost of fossil fuels day by day, development of alternative sources of energy has become important so that the world’s future energy needs can be mitigated. The focus has been given to develop economically viable and environment friendly technologies. Among all the forms of alternate energy sources, biohydrogen (BioH2) is of significant interest due to its carbon neutral combustion. Use of second-generation (lignocelluloses) and third-generation feedstocks (algae) to produce BioH2 can be a promising and efficient method, which fulfills the future demand of energy. Recently, BioH2 production using extremophiles has gained high attention due to fast production rate without any preprocessing or mild processing of plant biomass. Extremophiles are reported to produce BioH2 and other value-added products even from untreated lignocellulosic biomass. This chapter presents a review and in-depth analyses of extremophilic BioH2 production from lignocellulosic biomass. The chapter also provides the knowledge on how to develop a more efficient and economical integrated process for enhanced conversion of lignocellulosic feedstocks to BioH2.


Biohydrogen Extremophiles Pretreatment Lignocelluloses Fermentation 


  1. Abreu AA, Karakashev D, Angelidaki I (2012) Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed culture. Biotechnol Biofuels 5:1–12CrossRefGoogle Scholar
  2. Bae SS, Kim TW, Lee HS et al (2012) H2 production from CO, formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus. Biotechnol Lett 34:75–79CrossRefPubMedGoogle Scholar
  3. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106CrossRefGoogle Scholar
  4. Bhalla A, Bansal N, Kumar S et al (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759CrossRefPubMedGoogle Scholar
  5. Blumer-Schuette SE, Kataeva I, Westpheling J et al (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217CrossRefPubMedGoogle Scholar
  6. Cara C, Romero I, Oliva JM et al (2007) Liquid hot water of olive tree pruning residues. Appl Biochem Biotechnol 137–140:379–394PubMedGoogle Scholar
  7. Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 86:5–37CrossRefGoogle Scholar
  8. Chen CC, Chuang YS, Lin CY (2012) Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrog Energy 37:15540–15546CrossRefGoogle Scholar
  9. Chou CJ, Jenney FE Jr, Adams WW et al (2008) Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng 10:394–404CrossRefPubMedGoogle Scholar
  10. d’Ippolito G, Dipasquale L, Vella FM et al (2010) Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrog Energy 35:2290–2305CrossRefGoogle Scholar
  11. Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34:7349–7357CrossRefGoogle Scholar
  12. Datar R, Huang J, Maness PC et al (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with steam-explosion process. Int J Hydrog Energy 32:932–939CrossRefGoogle Scholar
  13. de Vrije T, Claassen PAM (2003) Dark hydrogen fermentations. In: Reith JH, Wijffels RH, Barten H (eds) Biomethane & bio-hydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, The Hague, pp 103–123Google Scholar
  14. de Vrije T, Bakker RR, Budde MAW et al (2009) Efficient hydrogen production from lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12CrossRefPubMedPubMedCentralGoogle Scholar
  15. Demirbas A (2007) Progress and recent trends in biofuel. Prog Energy Combust 33:1–18CrossRefGoogle Scholar
  16. Eriksen NT, Riis ML, Holm NK, Iversen N (2011) Hydrogen synthesis frompentoses and biomass in Thermotoga spp. Biotechnol Lett 33:293–300CrossRefPubMedGoogle Scholar
  17. Evers AA (2008) Actual worldwide hydrogen production from… Available at:
  18. Fan YT, Zhang YH, Zhang SF et al (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505CrossRefPubMedGoogle Scholar
  19. Gadow SI, Li YY, Liu Y (2012) Effect of temperature on continuous hydrogen production of cellulose. Int J Hydrog Energy 37:15465–15472CrossRefGoogle Scholar
  20. Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29CrossRefPubMedGoogle Scholar
  21. Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress andprognosis. Int J Hydrog Energy 34:7379–7389CrossRefGoogle Scholar
  22. Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9CrossRefPubMedGoogle Scholar
  23. Hasyim R, Imai T, Reungsang A et al (2011) Extreme-thermophilic biohydrogen production by an anaerobic heat treated digested sewage sludge culture. Int J Hydrog Energy 36:8727–8734CrossRefGoogle Scholar
  24. Ivanova G, Rakhely G, Kovacs KL (2008) Hydrogen production from biopolymers by Caldicellulosiruptor saccharolyticus and stabilization of the system by immobilization. Int J Hydrog Energy 33:6953–6961CrossRefGoogle Scholar
  25. Ivanova G, Rakhely G, Kovacs KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrog Energy 34:3659–3670CrossRefGoogle Scholar
  26. Jayasinghearachchi HS, Sarma PM, Lal B (2012) Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well. Int J Hydrog Energy 37:5569–5578CrossRefGoogle Scholar
  27. Jones P (2008) Improving fermentative biomass-derived H2-production by engineered microbial metabolism. Int J Hydrog Energy 33:5122–5130CrossRefGoogle Scholar
  28. Kanai T, Imanaka H, Nakajima A et al (2005) Continuous hydrogen production by the hyperthermophilic archon, Thermococcuskodakaraensis KOD1. J Biotechnol 116:271–282CrossRefPubMedGoogle Scholar
  29. Kongjan P, Angelidaki I (2010) Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresour Technol 101:7789–7796CrossRefPubMedGoogle Scholar
  30. Kotsopoulos T, Zeng RJ, Angelidaki I (2006) Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyperthermophilic temperature (70 °C). Biotechnol Bioeng 94:296–302CrossRefPubMedGoogle Scholar
  31. Kumar S, Bhalla A, Bibra M et al (2015) Thermophilic biohydrogen production: challenges at the industrial scale. In: Krishnaraj N, Yu JS (eds) Bioenergy: opportunities and challenges. Apple Academic Press, Oakville, pp 3–35CrossRefGoogle Scholar
  32. Lee SH, Doherty TV, Linhardt RJ (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376CrossRefPubMedGoogle Scholar
  33. Levin DB, Islam R, Cicek N, Sparling R (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrog Energy 31:1496–1503CrossRefGoogle Scholar
  34. Li Q, He YC, Xian M et al (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575CrossRefPubMedGoogle Scholar
  35. Lin ZX, Huang H, Zhang HM (2010) Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 162:1872–1880CrossRefPubMedGoogle Scholar
  36. Lu W, Fan G, Zhao C et al (2012) Enhancement of fermentative hydrogen production in an extreme-thermophilic (70 °C) mixed-culture environment by repeated batch cultivation. Curr Microbiol 64:427–432CrossRefPubMedGoogle Scholar
  37. Lynd LR, Laser MS, Bransby D, Dale BE et al (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172CrossRefPubMedGoogle Scholar
  38. Magnusson L, Islam R, Sparling R (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrog Energy 33:5398–5403CrossRefGoogle Scholar
  39. Mars AE, Veuskens T, Budde MAW et al (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35:7730–7737CrossRefGoogle Scholar
  40. McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292–324CrossRefGoogle Scholar
  41. Mosier NS, Hendrickson R, Brewer M et al (2005) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125:77–97CrossRefPubMedGoogle Scholar
  42. Munro SA, Zinder SH, Walker LP (2009) The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production. Biotechnol Prog 25:1035–1042CrossRefPubMedGoogle Scholar
  43. Negro MJ, Manzanares P, Oliva JM et al (2003) Changes in various physical/chemical parameters of Pinuspinaster wood after steam explosion pretreatment. Biomass Bioenergy 25:301–308CrossRefGoogle Scholar
  44. Ngo TA, Nguyen TH, Bui HTV (2012) Thermophilic fermentative hydrogen production by Thermotoga neapolitana DSM 4359. Renew Energy 37:174–179CrossRefGoogle Scholar
  45. Nguyen TAD, Kim KR, Kim MS et al (2010) Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrog Energy 35:13392–13398CrossRefGoogle Scholar
  46. Ni M, Leung DYC, Leung MKH (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472CrossRefGoogle Scholar
  47. Okuda K, Oka K, Onda A (2008) Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J Chem Technol Biotechnol 83:836–841CrossRefGoogle Scholar
  48. Panagiotopoulos IA, Bakker RR, de Vrije T et al (2010) Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 35:7738–7747CrossRefGoogle Scholar
  49. Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568CrossRefPubMedGoogle Scholar
  50. Radeva G, Valchev I, Petrin S et al (2012) Comparative kinetic analysis of enzyme hydrolysis of steam-exploded wheat straw. Cell Chem Technol 46:61–67Google Scholar
  51. Ragauskas AJ, Williams CK, Davison BH et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489CrossRefPubMedGoogle Scholar
  52. Ren N, Wang A, Gao L et al (2008a) Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks usingisolated cultures. Int J Hydrog Energy 33:5250–5255CrossRefGoogle Scholar
  53. Ren NQ, Cao GL, Wang AJ et al (2008b) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 33:6124–6132CrossRefGoogle Scholar
  54. Ren NQ, Cao GL, Guo WQ (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 35:2708–2712CrossRefGoogle Scholar
  55. Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb. Cell Fact. 11:115CrossRefPubMedPubMedCentralGoogle Scholar
  56. Saripan AF, Reungsang A (2013) Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum KKU-ED1: culture conditions optimization using mixed xylose/arabinose as substrate. Electron J Biotechnol 16.
  57. Shin SJ, Sung YJ (2008) Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiat Phys Chem 77:1034–1038CrossRefGoogle Scholar
  58. Singh L, Siddiqui MF, Ahmad A et al (2013a) Application of polyethylene glycol immobilized Clostridium sp.LS2 for continuous hydrogen production from palm oil mill effluent in upflow anaerobic sludge blanket reactor. Biochem Eng J 70:158–165CrossRefGoogle Scholar
  59. Singh L, Wahid ZA, Siddiqui MF et al (2013b) Biohydrogen production from palm oil mill effluent using immobilized Clostridium butyricum EB6 in polyethylene glycol. Process Biochem 48:294–298CrossRefGoogle Scholar
  60. Soboh B, Linder D, Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH dependent Fe-only hydrogenase inthe fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:2451–2463CrossRefPubMedGoogle Scholar
  61. Suresh B, Schlag S, Kumamoto T, Ping Y (2010) Hydrogen. SRI Consulting. Chemical Economics Handbook. Available at:
  62. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefPubMedPubMedCentralGoogle Scholar
  63. Talluri S, Raj SM, Christopher LP (2013) Consolidated bioprocessing of untreated switch grass to hydrogen by the extreme thermophile C. saccharolyticus DSM 8903. Bioresour Technol 139:272–279CrossRefPubMedGoogle Scholar
  64. Verhaart MRA, Bielen AAM, van der Oost J et al (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31:993–1003CrossRefPubMedGoogle Scholar
  65. Willquist K, Zeidan AA, van Niel EWJ (2010) Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microb Cell Factor 9:89CrossRefGoogle Scholar
  66. Xu Q, Singh A, Himmel ME (2009) Perspectives and new direction for the production of bioethanol using consolidated bioprocessing of lignocelluloses. Curr Opin Biotechnol 20:364–371CrossRefPubMedGoogle Scholar
  67. Yang HH, Guo LJ, Liu F (2010) Enhanced bio-hydrogen production from corncob by a two-step process: dark- and photo-fermentation. Bioresour Technol 101:2049–2052CrossRefPubMedGoogle Scholar
  68. Zhao C, Karakashev D, Lu W et al (2010) Xylose fermentation to biofuels (hydrogen and ethanol) by extreme thermophilic (70 °C) mixed culture. Int J Hydrog Energy 35:3415–3422CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biochemical Conversion DivisionSardar Swaran Singh National Institute of Bio-EnergyKapurthalaIndia
  2. 2.Department of Chemical and Biological EngineeringSouth Dakota School of Mines and TechnologyRapid CityUSA
  3. 3.Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA
  4. 4.Department of Chemical and Biological Engineering & Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations