Skip to main content

Fair Scheduling of Two-Hop Transmission with Energy Harvesting

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 223)

Abstract

In this paper, we consider a two-hop network with a source node (SN) and a relay node (RN) who want to communicate data to a destination node (DN). The SN cannot be directly connected to the DN, but rather is connected only via the RN. The RN does not have an external source of energy, and thus needs to harvest energy from the SN to communicate, while the SN has an external source of energy and can harvest energy straight from it. Thus, a dilemma for the SN arises: how much to share harvested energy with the RN to make it relay the SN’s data to the DN. Fair performing of their communication tasks is considered as an incentive for the SN and the RN to cooperate. The optimal \(\alpha \) fair schedule is found for each \(\alpha \). It is shown that an altruistic strategy for one of the nodes comes in as a part of the cooperative solution (corresponding \(\alpha =0\)), while the maxmin strategy (corresponding \(\alpha \) tending to infinity) is proved to be egalitarian. Using Nash bargaining over the obtained continuum of fair solutions, we design a trade-off strategy.

Keywords

  • Adhocnets
  • Energy harvesting
  • Fairness
  • Bargaining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-74439-1_17
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-74439-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   72.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Altman, E., Avrachenkov, K., Garnaev, A.: Fair resource allocation in wireless networks in the presence of a jammer. Perform. Eval. 67, 338–349 (2010)

    CrossRef  Google Scholar 

  2. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Boston (1991)

    MATH  Google Scholar 

  3. Garnaev, A., Sagari, S., Trappe, W.: Fair channel sharing by Wi-Fi and LTE-U networks with equal priority. In: Noguet, D., Moessner, K., Palicot, J. (eds.) CrownCom 2016. LNICST, vol. 172, pp. 91–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40352-6_8

    Google Scholar 

  4. Garnaev, A., Sagari, S., Trappe, W.: Bargaining over fair channel sharing between Wi-Fi and LTE-U networks. In: Koucheryavy, Y., Mamatas, L., Matta, I., Ometov, A., Papadimitriou, P. (eds.) WWIC 2017. LNCS, vol. 10372, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61382-6_1

    CrossRef  Google Scholar 

  5. Garnaev, A., Trappe, W.: The eavesdropping and jamming dilemma in multi-channel communications. In: IEEE International Conference on Communications (ICC), Budapest, Hungary, pp. 2160–2164 (2013)

    Google Scholar 

  6. Garnaev, A., Trappe, W.: Fair resource allocation under an unknown jamming attack: a Bayesian game. In: IEEE International Workshop on Information Forensics and Security (WIFS), Atlanta, GA, pp. 227–232 (2014)

    Google Scholar 

  7. Garnaev, A., Trappe, W.: Secret communication when the eavesdropper might be an active adversary. In: Jonsson, M., Vinel, A., Bellalta, B., Belyaev, E. (eds.) MACOM 2014. LNCS, vol. 8715, pp. 121–136. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10262-7_12

    Google Scholar 

  8. Garnaev, A., Trappe, W.: To eavesdrop or jam, that is the question. In: Mellouk, A., Sherif, M.H., Li, J., Bellavista, P. (eds.) ADHOCNETS 2013. LNICST, vol. 129, pp. 146–161. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04105-6_10

    CrossRef  Google Scholar 

  9. Garnaev, A., Trappe, W.: Bargaining over the fair trade-off between secrecy and throughput in OFDM communications. IEEE Trans. Inf. Forensics Secur. 12, 242–251 (2017)

    CrossRef  Google Scholar 

  10. Garnaev, A., Trappe, W., Petropulu, A.: Bargaining over fair performing dual radar and communication task. In: 50th Asilomar Conference on Signals. Systems, and Computers, Pacific Grove, CA, pp. 47–51 (2016)

    Google Scholar 

  11. Gunduz, D., Devillers, B.: Two-hop communication with energy harvesting. In: 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 201–204 (2011)

    Google Scholar 

  12. Huaizhou, S., Prasad, R.V., Onur, E., Niemegeers, I.: Fairness in wireless networks: Issues, measures and challenges. IEEE Comm. Surv. Tutor. 16, 5–24 (2014)

    CrossRef  Google Scholar 

  13. Karalis, A., Joannopoulos, J.D., Soljacic, M.: Efficient wireless nonradiative mid-range energy transfer. Ann. Phys. 323, 34–48 (2008)

    CrossRef  Google Scholar 

  14. Militano, L., Niyato, D., Condoluci, M., Araniti, G., Iera, A., Bisci, G.M.: Radio resource management for group-oriented services in LTE-A. IEEE Trans. Veh. Technol. 64, 3725–3739 (2015)

    CrossRef  Google Scholar 

  15. Mo, J., Walrand, J.: Fair end-to-end window-based congestion control. IEEE/ACM Trans. Netw. 8, 556–567 (2000)

    CrossRef  Google Scholar 

  16. Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S., Yener, A.: Transmission with energy harvesting nodes in fading wireless channels: optimal policies. IEEE J. Sel. Areas Commun. 29, 1732–1743 (2011)

    CrossRef  Google Scholar 

  17. Reyhanian, N., Maham, B., Shah-Mansouri, V., Tusher, W., Yuen, C.: Game-theoretic approaches for energy cooperation in energy harvesting small cell networks. IEEE Trans. Veh. Technol. 66, 7178–7194 (2017)

    CrossRef  Google Scholar 

  18. Varan, B., Yener, A.: Throughput maximizing games in the two-hop relay channel with energy cooperation. In: 49th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2015)

    Google Scholar 

  19. Xiao, Y., Niyato, D., Han, Z., DaSilva, L.A.: Dynamic energy trading for energy harvesting communication networks: a stochastic energy trading game. IEEE J. Sel. Areas Commun. 33, 2718–2734 (2015)

    CrossRef  Google Scholar 

  20. Yang, J., Ulukus, S.: Optimal packet scheduling in an energy harvesting communication system. IEEE Trans. Commun. 60, 220–230 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Garnaev .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Proof of Theorem

1 . By (1) and (3), \(T_s\le p_h T/(p_h+p_s)\). Then, due to v given by (4) is increasing on \(T_s\), (5) follows.    \(\blacksquare \)

Proof of Theorem

2 . To find the optimal \(p_s\) we have to find derivation of v on \(p_s\): \(d\,v(p_s)/d\, p_s=\left( h_s(p_h+p_s)/(1+h_sp_s)-\ln (1+h_sp_s) \right) T p_h/(p_h+p_s)^2.\) Thus, \(dv/dp_s\{>,=,<\} 0\) if and only if \(1+a/x-\ln (x) \{>,=,< \} 0\), where \(x=1+h_sp_s\) and \(a=h_sp_h-1\). It is clear that \(a>-1\) and \(x\ge 1\). For a fixed \(a>-1\) the function \(1+a/x-\ln (x)\) is decreasing on \(x\ge 1\). Moreover, the equation \(1+a/x-\ln (x)=0\) has the unique root \(x=\exp (\text{ LambertW }\left( a/e\right) +1)\), and the result follows.    \(\blacksquare \)

Proof of Theorem

3 . Since \(v(\varvec{T})\) is concave, to find the optimal \(\varvec{T}\) the KKT Theorem can be applied. First we define Lagrange function \(L_{\omega _1,\omega _2,\omega _3}(\varvec{T})\) with \(\omega _1\), \(\omega _2\) and \(\omega _3\) are Lagrange multipliers as follows:

$$\begin{aligned} \begin{aligned} L_{\omega _1,\omega _2,\omega _3}(\varvec{T})&=\frac{(T_{rd}L_r)^{1-\alpha }}{1-\alpha }+\frac{(T_{sd}L_s)^{1-\alpha }}{1-\alpha }+\omega _1(T-T_h-T_{hr}-T_{sd}-T_{rd})\\&\quad +\omega _2(p_hT_h-T_{hr}p_s-T_{sd}p_s)+\omega _3(\gamma h_{sr}p_sT_{hr}-T_{rd}p_r). \end{aligned} \end{aligned}$$
(22)

Then, for \(\varvec{T}\) to be optimal, besides of conditions (15b)–(15d), the following relations have to hold:

$$\begin{aligned} \partial L/\partial T_{rd}=L_r^{1-\alpha }/(T_{rd})^{\alpha }-\omega _1-p_r\omega _3{\left\{ \begin{array}{ll} =0,&{} T_{rd}>0,\\ \le 0,&{} T_{rd}=0, \end{array}\right. } \end{aligned}$$
(23)
$$\begin{aligned} \partial L/\partial T_{sd}=L_s^{1-\alpha }/(T_{sd})^{\alpha }-\omega _1-p_s\omega _2{\left\{ \begin{array}{ll} =0,&{} T_{sd}>0,\\ \le 0,&{} T_{sd}=0, \end{array}\right. } \end{aligned}$$
(24)
$$\begin{aligned} \partial L/\partial T_{h}=-\omega _1+p_h\omega _2=0, \end{aligned}$$
(25)
$$\begin{aligned} \partial L/\partial T_{hr}=-\omega _1-p_s\omega _2 +\gamma h_{sr}p_s\omega _3 =0. \end{aligned}$$
(26)

By (25), we have that

$$\begin{aligned} \omega _2=\omega _1/p_h. \end{aligned}$$
(27)

By (26) and (27), we have that \(\omega _3=(1+p_s/p_h)\omega _1/(\gamma h_{sr}p_s).\) Then, (17) and (23) yield that:

$$\begin{aligned} T_{rd}=\frac{L_r^{1/\alpha -1}}{(\omega _1+p_r\omega _3)^{1/\alpha }}= \frac{L_r^{1/\alpha -1}}{(1+P_r(1+P_s))^{1/\alpha } \omega _1^{1/\alpha }}=\frac{A_r^{1/\alpha -1} }{(1+P_r(1+P_s))\omega _1^{1/\alpha }}. \end{aligned}$$
(28)

By (24), in notation (17), we have that

$$\begin{aligned} T_{sd}=\frac{L_s^{1/\alpha -1}}{(\omega _1+p_s\omega _2)^{1/\alpha }}= \frac{L_s^{1/\alpha -1}}{(1+P_s)^{1/\alpha }\omega _1^{1/\alpha }}= \frac{A_s^{1/\alpha -1}}{(1+P_s)\omega _1^{1/\alpha }}. \end{aligned}$$
(29)

By (15d), (17) and (28) the following relation holds

$$\begin{aligned} T_{hr}=T_{rd} p_r/(\gamma h_{sr}p_s)=P_rT_{rd}=P_rA_r^{1/\alpha -1}/((1+P_r(1+P_s))\omega _1^{1/\alpha }). \end{aligned}$$
(30)

By (15c), (29) and (30), using notation (17) we have that

$$\begin{aligned} {\begin{matrix} T_h&=\frac{p_s}{p_h}\left( T_{hr}+T_{sd}\right) =P_s\left( T_{hr}+T_{sd}\right) =\frac{P_sP_rA_r^{1/\alpha -1} }{(1+P_r(1+P_s))\omega _1^{1/\alpha }}+\frac{P_sA_s^{1/\alpha -1}}{(1+P_s)\omega _1^{1/\alpha }}. \end{matrix}} \end{aligned}$$
(31)

Then, summing (28)–(31) and taking into account (15c) imply that \(\omega _1^{1/\alpha }=(A_s^{1/\alpha -1}+A_r^{1/\alpha -1})/T.\) Substituting this \(\omega _1\) into (28)–(31) implies (16). Then,

$$\begin{aligned} v_{s,\alpha }=L_s T_{su,\alpha }=T A_s^{1/\alpha }/(A_s^{1/\alpha -1}+A_r^{1/\alpha -1}), \end{aligned}$$
(32)
$$\begin{aligned} v_{r,\alpha }=L_r T_{ru,\alpha }=T A_r^{1/\alpha }/(A_s^{1/\alpha -1}+A_r^{1/\alpha -1}). \end{aligned}$$
(33)

Dividing (32) by (33) yields the first relation in (18). Note that

$$\begin{aligned} \frac{A_s^{1/\alpha }}{A_s^{1/\alpha -1}+A_r^{1/\alpha -1}}=A_s\frac{A_s^{1/\alpha -1}}{A_s^{1/\alpha -1}+A_r^{1/\alpha -1}}= A_s\left( 1- \frac{1}{A_r}\frac{A_r^{1/\alpha }}{A_s^{1/\alpha -1}+A_r^{1/\alpha -1}}\right) . \end{aligned}$$

This, jointly with (32) and (33), implies the second relation in (18), and the result follows.    \(\blacksquare \)

Proof of Theorem

4 : By (21), two cases arise: \(A_s>A_r\) and \(A_s<A_r\). Let \(A_s>A_r\). Then, by (18), (19) and (21), \(NP(v_s,v_r)=(v_s-v_{\infty })v_r=(TA_s- A_s v_r/A_r-v_{\infty })v_r= A_s(TA_s/(A_s+A_r)- v_r/A_r)v_r.\) Thus, the \( (TA_s- A_s v_{\infty }/(2A_r),v_{\infty }/2)\) is the NBS, and the result follows from (19) and the first relation in (18).    \(\blacksquare \)

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Garnaev, A., Trappe, W. (2018). Fair Scheduling of Two-Hop Transmission with Energy Harvesting. In: Zhou, Y., Kunz, T. (eds) Ad Hoc Networks. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-74439-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74439-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74438-4

  • Online ISBN: 978-3-319-74439-1

  • eBook Packages: Computer ScienceComputer Science (R0)