Achieving CO2 Emission Reductions Through Local-Scale Energy Systems Planning: Methods and Pathways for Switzerland

Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 64)

Abstract

Limiting the global temperature increase to well below 2 ℃ this century requires the implementation of climate policies not only on an international or national level, but also on a local scale. This study evaluates decarbonization pathways for Switzerland through local-scale energy systems planning under a national energy policy which reflects Swiss CO2 emission reduction targets within the Paris Agreement. Clustering techniques are applied to identify characteristic local energy systems (archetypes) across Switzerland. Key archetypes are then evaluated using a parameterized, least-cost optimization, community energy systems model in TIMES. Heat and electricity demands for residential, commercial, industrial, and agricultural sectors are considered. The study finds that locally generated CO2 emissions are reduced by 85% in 2050 relative to 2015, on average, across the evaluated archetypes and sectors. The implementation of high CO2 taxes drives this result. CO2 emission reductions are also driven by the uptake of efficiency measures (including renovations and efficient end-use devices). These measures should be encouraged by local governments as part of local climate strategies. Decision-makers should also encourage the local-scale deployment of heat pump and solar PV technologies, which are found to generate significant shares of heat and electricity by 2050, cost optimally, across the archetypes. The utilization of local energy resources, including biomass, also plays an important role in achieving significant local-scale emission reductions in the long-term.

References

  1. Amorim F, Pina A, Gerbelová H et al (2014) Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling. Energy 69:104–112.  https://doi.org/10.1016/j.energy.2014.01.052CrossRefGoogle Scholar
  2. Arthur D, Vassilvitskii S (2007) K-means ++: the advantages of careful seeding. In: SODA ‘07: proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, pp 1027–1035Google Scholar
  3. Buffat R (2016) Spatial allocation of Swiss municipal waste and manure resources (personal communication)Google Scholar
  4. Edenhofer O, Pichs-Madruga R, Sokona Y et al (2015) Climate change 2014 mitigation of climate change summary for policymakers and technical summaryGoogle Scholar
  5. Eymann L, Rohrer J, Stucki M (2014) Energieverbrauch der Schweizer Kantone. WaedenswilGoogle Scholar
  6. Gago da Camara Simoes S, Wouter N, Ruiz Castello P et al (2013) The JRC-EU-TIMES model—assessing the long-term role of the SET plan energy technologies. http://publications.jrc.ec.europa.eu/repository/handle/JRC85804. Accessed 22 Apr 2016
  7. Gao X, Malkawi A (2014) A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm. Energy Build 84:607–616.  https://doi.org/10.1016/j.enbuild.2014.08.030CrossRefGoogle Scholar
  8. Goldstein G, Tosato G (2008) Global energy systems and common analyses—final report of annex X (2005–2008)Google Scholar
  9. Hertach M (2012) Dokumentation Geodatenmodell Kleinwasserkraftpotentiale der Schweizer Gewässer. http://www.bfe.admin.ch/geoinformation/05403/05570/index.html?lang=de&dossier_id=05569. Accessed 25 Oct 2016
  10. Kirchner A, Bredow D, Dining F et al (2012) Die Energieperspektiven für die Schweiz bis 2050. www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_564869151.pdf. Accessed 22 Apr 2016
  11. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137.  https://doi.org/10.1109/TIT.1982.1056489MathSciNetCrossRefMATHGoogle Scholar
  12. Loulou R, Remme U, Kanudia A et al (2016) Documentation for the TIMES model. http://www.iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf. Accessed 16 Dec 2016
  13. National Forest Inventory (2016) National forest inventory. http://www.lfi.ch/resultate/anleitung-en.php. Accessed 25 Oct 2016
  14. Nikolaou TG, Kolokotsa DS, Stavrakakis GS, Skias ID (2012) On the application of clustering techniques for office buildings’ energy and thermal comfort classification. IEEE Trans Smart Grid 3:2196–2210.  https://doi.org/10.1109/TSG.2012.2215059CrossRefGoogle Scholar
  15. Panos E, Ramachandran K (2016) The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland. Energy 112:1120–1138.  https://doi.org/10.1016/j.energy.2016.06.107CrossRefGoogle Scholar
  16. Pattupara R, Ramachandran K (2016) Alternative low-carbon electricity pathways in Switzerland and its neighbouring countries under a nuclear phase-out scenario. Appl Energy 172:152–168.  https://doi.org/10.1016/j.apenergy.2016.03.084CrossRefGoogle Scholar
  17. Ramachandran K, Turton H (2011) Documentation on the development of the Swiss TIMES electricity model (STEM-E). http://www.psi.ch/eem/PublicationsTabelle/2011_Kannan_STEME.pdf. Accessed 22 Apr 2016
  18. Ramachandran K, Turton H (2013) A long-term electricity dispatch model with the TIMES framework. Environ Model Assess 18:325–343.  https://doi.org/10.1007/s10666-012-9346-yCrossRefGoogle Scholar
  19. Ramachandran K, Turton H (2014) Switzerland energy transition scenarios—development and application of the Swiss TIMES energy system model (STEM). https://www.psi.ch/eem/PublicationsTabelle/2014-STEM-PSI-Bericht-14-06.pdf. Accessed 22 Apr 2016
  20. Ramachandran K, Turton H (2016) Long term climate change mitigation goals under the nuclear phase out policy: the Swiss energy system transition. Energy Econ 55:211–222.  https://doi.org/10.1016/j.eneco.2016.02.003CrossRefGoogle Scholar
  21. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65.  https://doi.org/10.1016/0377-0427(87)90125-7CrossRefMATHGoogle Scholar
  22. Santamouris M, Mihalakakou G, Patargias P et al (2007) Using intelligent clustering techniques to classify the energy performance of school buildings. Energy Build 39:45–51.  https://doi.org/10.1016/j.enbuild.2006.04.018CrossRefGoogle Scholar
  23. Swiss Federal Council (2015) Switzerland targets 50% reduction in greenhouse gas emissions by 2030. https://www.admin.ch/gov/en/start/dokumentation/medienmitteilungen.msg-id-56394.html. Accessed 22 Nov 2017
  24. Swiss Federal Council (2017) Instrument of ratification deposited: Paris climate agreement to enter into force for Switzerland on 5 November 2017. https://www.admin.ch/gov/en/start/documentation/media-releases.msg-id-68345.html. Accessed 22 Nov 2017
  25. Swiss Federal Office of Energy (2013) Small-scale hydropower. http://www.bfe.admin.ch/themen/00490/00491/00493/?lang=en. Accessed 25 Oct 2016
  26. Swiss Federal Office of Energy (2017) Measures for increasing energy efficiency. http://www.bfe.admin.ch/energiestrategie2050/06447/06457/index.html?lang=en. Accessed 28 Nov 2017
  27. Swiss Federal Office of Statistics (2016a) Geostat. https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat.html. Accessed 25 Oct 2016
  28. Swiss Federal Office of Statistics (2016b) Gebäude- und Wohnungsregister. In: Gebäude- und Wohnungsregister. https://www.bfs.admin.ch/bfs/de/home/register/gebaeude-wohnungsregister.html. Accessed 25 Oct 2016
  29. The World Bank Group (2017) CO2 emissions. https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?locations=CH. Accessed 11 Dec 2017
  30. Trutnevyte E, Stauffacher M, Schlegel M, Scholz RW (2012) Context-specific energy strategies: coupling energy system visions with feasible implementation scenarios. Environ Sci Technol 46:9240–9248.  https://doi.org/10.1021/es301249pCrossRefGoogle Scholar
  31. Vögelin P, Georges G, Noembrini F et al (2016) System modelling for assessing the potential of decentralised biomass-CHP plants to stabilise the Swiss electricity network with increased fluctuating renewable generation. ZurichGoogle Scholar
  32. Xiao H, Wei Q, Jiang Y (2012) The reality and statistical distribution of energy consumption in office buildings in China. Energy Build 50:259–265.  https://doi.org/10.1016/j.enbuild.2012.03.048CrossRefGoogle Scholar
  33. Yazdanie M (2017) The role of decentralized generation. Storage and Local Energy Resources in Future Communities, ETH ZurichGoogle Scholar
  34. Yazdanie M, Densing M, Wokaun A (2017) Cost optimal urban energy systems planning in the context of national energy policies: a case study for the city of Basel. Energy Policy 110:176–190.  https://doi.org/10.1016/j.enpol.2017.08.009CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Energy Systems Analysis, Energy Economics GroupPaul Scherrer InstituteVilligen PSISwitzerland

Personalised recommendations