Advertisement

Challenges and Opportunities for the Swiss Energy System in Meeting Stringent Climate Mitigation Targets

  • Evangelos Panos
  • Ramachandran Kannan
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 64)

Abstract

In this chapter, we assess the feasibility of the Swiss commitments to mitigate climate change under the framework of the Swiss energy strategy objectives: gradual phase-out of nuclear power, energy efficiency gains and deployment of renewables. We employ an enhanced version of the Swiss TIMES energy systems model (STEM), in which the electricity grid, ancillary services markets, and variability of renewable energy are explicitly modelled. We present two main scenarios: (a) a Baseline scenario that passes through the Swiss national determined contribution (NDC); and (b) a Low Carbon scenario consistent with an emission trajectory to achieve a below 2 °C global warming. The analysis shows that moving beyond NDC requires fast and deep emissions reductions. Electrification and efficiency are the key pillars in achieving decarbonisation. New business models emerge that enable active participation of consumers in the energy supply. However, long-term and consistent price signals are needed to unlock energy savings potentials in the end-use sector. Early action and continuous policy response are necessary to avoid lock-in of emission-intensive infrastructure and stranded assets. Alignment of near-term action with longer-term technology needs and policy objectives is crucial.

Notes

Acknowledgements

The research reported in this paper was partially funded by the Competence Centre Energy and Mobility (CCEM) through the project “Integration of Stochastic renewables in the Swiss Electricity Supply System (ISCHESS)”, and by the Swiss Competence Centre for Energy Research through the project “Joint activity in Scenario and Modelling”.

References

  1. BAFU (2016b) Switzerland’s second biennial report under the UNFCCC. Federal Office for the Environment—BAFU, Bern. http://www.bafu.admin.ch/climatereporting
  2. Bauer C, Hirschberg S (eds), Bäuerle Y, Biollaz S, Calbry-Muzyka A, Cox B, Heck T, Lehnert M, Meier A, Schenler W, Treyer K, Vogel F, Wieckert HC, Zhang X, Zimmermann M, Burg V, Bowman G, Erni M, Saar M, Tran MQ (2017) Potentials, costs and environmental assessment of electricity generation technologies. PSI, WSL, ETHZ, EPFL, Paul Scherrer Institut, Villigen. http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=en&name=en_854880113.pdf
  3. BFE (2015) Schweizerische Elektrizitätsstatistik. Bundesamt für Energie. http://www.bfe.admin.ch/themen/00526/00541/00542/00630/index.html?lang=de&dossier_id=00765
  4. Bretschger L, Zhang L (2017) Nuclear phase-out under stringent climate policies: a dynamic macroeconomic analysis. Energy J 38.  https://doi.org/10.5547/01956574.38.1.lbre
  5. Daly HE, Ramea K, Chiodi A, Yeh S, Gargiulo M, Ó Gallachóir B (2015) Modal shift of passenger transport in a TIMES model: application to Ireland and California. In: Giannakidis G, Labriet M, Ó Gallachóir B, Tosato G (eds) Informing energy and climate policies using energy systems models: insights from scenario analysis increasing the evidence base. Springer International Publishing, Cham, pp 279–291.  https://doi.org/10.1007/978-3-319-16540-0_16
  6. EC (2017) Building up the future. Final report of special group on advanced biofuels to the sustainable transport forum. European Commission, BrusselsGoogle Scholar
  7. Ecoplan (2012) Energiestrategie 2050 - volkswirtschaftliche Auswirkungen. Bundesamt für Energie. https://www.newsd.admin.ch/newsd/message/attachments/35780.pdf
  8. Fuchs A, Demiray T, Panos E, Kannan R, Kober T, Bauer C, Schenler W, Burgherr P, Hirschberg S (2017) ISCHESS—integration of stochastic renewables in the Swiss electricity supply system. ETH Zurich—Research Center for Energy Networks. PSI—Laboratory for energy systems analysis. https://www.psi.ch/lea/HomeEN/Final-Report-ISCHESS-Project.pdf
  9. IEA (2016) Energy technology perspectives 2016. International Energy Agency, Paris. http://www.iea.org/Textbase/npsum/ETP2016SUM.pdf
  10. IEA (2017) Energy technology perspectives 2017. International Energy Agency, Paris. https://www.iea.org/etp2017/
  11. Kannan R, Turton H (2014) Switzerland energy transition scenarios—development and application of the Swiss TIMES energy system model (STEM)Google Scholar
  12. Kannan R, Turton H (2016) Long term climate change mitigation goals under the nuclear phase out policy: the Swiss energy system transition. Energy Econ 55:211–222.  https://doi.org/10.1016/j.eneco.2016.02.003CrossRefGoogle Scholar
  13. Kypreos S (1999) Assessment of CO2 reduction policies for Switzerland. Int J Global Energy Issues 12:233–243.  https://doi.org/10.1504/IJGEI.1999.000836CrossRefGoogle Scholar
  14. Lehtilä A, Giannakidis G (2013) TIMES grid modeling features. IEA—Energy Technology Systems Analysis Programme (ETSAP). http://iea-etsap.org/docs/TIMES-RLDC-Documentation.pdf
  15. Lehtilä A, Noble K (2011) TIMES early retirement capacity. IEA—ETSAP. http://iea-etsap.org/docs/TIMES-Early-Retirement-of-Capacity.pdf
  16. Lehtilä A, Giannakidis G, Tigas K (2014) Residual load curves in TIMES. IEA—Energy Technology Systems Analysis Programme (ETSAP). http://iea-etsap.org/docs/TIMES-RLDC-Documentation.pdf
  17. Marcucci A, Turton H (2012) Swiss energy strategies under global climate change and nuclear policy uncertainty. Swiss J Econ Stat (SJES) 148:317–345. https://ideas.repec.org/a/ses/arsjes/2012-ii-8.html
  18. Mathys N, Justen A (2016) Perspektiven des Schweizerischen Personen- und Güterverkehrs bis 2040. Hauptbericht Bundesamt für Raumentwicklung (ARE). https://www.are.admin.ch/dam/are/de/dokumente/verkehr/publikationen/Verkehrsperspektiven_2040_Hauptbericht.pdf.download.pdf/Verkehrsperspektiven_2040_Hauptbericht.pdf
  19. Millar RJ, Fuglestvedt JS, Friedlingstein P, Rogelj J, Grubb MJ, Matthews HD, Skeie RB, Forster PM, Frame DJ, Allen MR (2017) Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat Geosci 10:741  https://doi.org/10.1038/ngeo3031. https://www.nature.com/articles/ngeo3031#supplementary-information
  20. Osorio S, van Ackere A (2016) From nuclear phase-out to renewable energies in the Swiss electricity market. Energy Policy 93:8–22.  https://doi.org/10.1016/j.enpol.2016.02.043CrossRefGoogle Scholar
  21. Panos E, Kannan R (2016) The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland. Energy 112:1120–1138.  https://doi.org/10.1016/j.energy.2016.06.107
  22. Panos E, Lehtilä A (2016) Dispatching and unit commitment features in TIMES. International Energy Agency—Energy Technology Systems Analysis Programme (ETSAP). https://iea-etsap.org/docs/TIMES_Dispatching_Documentation.pdf
  23. Pattupara R, Kannan R (2016) Alternative low-carbon electricity pathways in Switzerland and it’s neighbouring countries under a nuclear phase-out scenario. Appl Energy 172:152–168.  https://doi.org/10.1016/j.apenergy.2016.03.084CrossRefGoogle Scholar
  24. Prognos AG (2012) Die Energieperspektiven für die Schweiz bis 2050 (The energy perspectives for Switzerland until 2050). Bundesamt für Energie (BFE). http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_564869151.pdf
  25. Schlecht I, Weigt H (2014) Swissmod: a model of the Swiss electricity market. FoNEW discussion paper 2014/01Google Scholar
  26. Schulz TF, Kypreos S, Barreto L, Wokaun A (2008) Intermediate steps towards the 2000 W society in Switzerland: an energy–economic scenario analysis. Energy Policy 36:1303–1317.  https://doi.org/10.1016/j.enpol.2007.12.006CrossRefGoogle Scholar
  27. Stauffacher M, Muggli N, Scolobig A, Moser C (2015) Framing deep geothermal energy in mass media: the case of Switzerland. Technol Forecast Soc Change 98:60–70.  https://doi.org/10.1016/j.techfore.2015.05.018CrossRefGoogle Scholar
  28. Steubing B, Zah R, Waeger P, Ludwig C (2010) Bioenergy in Switzerland: assessing the domestic sustainable biomass potential. Renew Sustain Energy Rev 14:2256–2265.  https://doi.org/10.1016/j.rser.2010.03.036CrossRefGoogle Scholar
  29. Stiglitz J, Stern N, Duan M, Edenhofer O, Gireaud G, Heal G, la Rovere E, Morris A, Moyer E, Pangestu M, Shukla P, Sokona Y, Winkler H (2017) Report of the high-level commission on carbon Prices. World Bank. https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/59244eed17bffc0ac256cf16/1495551740633/CarbonPricing_Final_May29.pdf
  30. Sutter D, Werner M, Zappone A, Mazzotti M (2013) Developing CCS into a realistic option in a country’s energy strategy. Energy Procedia 37:6562–6570.  https://doi.org/10.1016/j.egypro.2013.06.588CrossRefGoogle Scholar
  31. UN (2017a) Sustainable development goals. United Nations. http://www.un.org/sustainabledevelopment/sustainable-development-goals/
  32. UN (2017b) World population prospects: the 2017 revision. DVD edn. United Nations, Department of Economic and Social Affairs, Population Division. https://esa.un.org/unpd/wpp/Download/Standard/Population/
  33. UNFCCC (2015) Switzerland’s intended nationally determined contribution (INDC) and clarifying information. UNFCCC. http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx. Accessed 21.02.2015
  34. von Kupsch B (2015) Bericht zum Strategischen Netz 2025 (Technical report on the “Strategic Grid 2025”). Swissgrid AG. https://www.swissgrid.ch/dam/swissgrid/company/publications/de/sn2025_technischer_bericht_de.pdf
  35. Weidmann N, Kannan R, Turton H (2012) Swiss climate change and nuclear policy: a comparative analysis using an energy system approach and a sectoral electricity model. Swiss J Econ Stat (SJES) 148:275–316. https://ideas.repec.org/a/ses/arsjes/2012-ii-7.html
  36. Welsch M, Howells M, Hesamzadeh MR, Ó Gallachóir B, Deane P, Strachan N, Bazilian M, Kammen DM, Jones L, Strbac G, Rogner H (2015) Supporting security and adequacy in future energy systems: the need to enhance long-term energy system models to better treat issues related to variability. Int J Energy Res 39:377–396.  https://doi.org/10.1002/er.3250
  37. Zuberi MJS, Patel MK (2017) Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the Swiss cement industry. J Clean Prod 142:4294–4309.  https://doi.org/10.1016/j.jclepro.2016.11.178CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Energy Systems Analysis, Energy Economics GroupPaul Scherrer InstitutVilligenSwitzerland

Personalised recommendations