The Prediction of Vibrations for Light Structures in Presence of Moving People

  • M. Berardengo
  • L. Drago
  • S. Manzoni
  • M. Vanali
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Recently, a model to describe the vibration of light structures (e.g. footbridges, staircases) was proposed by the authors of this paper. Such a model was developed with the aim of being accurate with a high number of people occupying the structure for long times. The present paper analyses the behaviour of the same model in the case of transient excitation of the structure. This allows to assess the accuracy of the model also in this further situation.


Human structure interaction Ground reaction force Dynamics Vibration Slender structure 


  1. 1.
    Sachse, R., Pavic, A., Reynolds, P.: Human-structure dynamic interaction in civil engineering dynamics: a literature review. Shock Vib. Dig. 35, 3–18 (2003)CrossRefGoogle Scholar
  2. 2.
    Živanović, S., Pavic, A., Reynolds, P.: Vibration serviceability of footbridges under human-induced excitation: A literature review. J. Sound Vib. 279, 1–74 (2005)CrossRefGoogle Scholar
  3. 3.
    Racic, V., Pavic, A., Brownjohn, J.M.W.: Experimental identification and analytical modelling of human walking forces: literature review. J. Sound Vib. 326, 1–49 (2009)CrossRefGoogle Scholar
  4. 4.
    Alexander, N.A.: Theoretical treatment of crowd–structure interaction dynamics. Proc. Inst. Civ. Eng. Struct. Build. 159, 329–338 (2006)CrossRefGoogle Scholar
  5. 5.
    Sim, J., Blakeborough, A., Williams, M.: Modelling of joint crowd-structure system using equivalent reduced-DOF system. Shock. Vib. 14, 261–270 (2007)CrossRefGoogle Scholar
  6. 6.
    Venuti, F., Bruno, L., Bellomo, N.: Crowd dynamics on a moving platform: mathematical modelling and application to lively footbridges. Math. Comput. Model. 45, 252–269 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Venuti, F., Racic, V., Corbetta, A.: Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges. J. Sound Vib. 379, 245–263 (2016)CrossRefGoogle Scholar
  8. 8.
    Van Nimmen, K., Lombaert, G., De Roeck, G., Van den Broeck, P.: Vibration serviceability of footbridges: evaluation of the current codes of practice. Eng. Struct. 59, 448–461 (2014)CrossRefGoogle Scholar
  9. 9.
    Figueiredo, F.P., da Silva, J.G.S., de Lima, L.R.O., da Vellasco, P.C.G.S., de Andrade, S.A.L.: A parametric study of composite footbridges under pedestrian walking loads. Eng. Struct. 30, 605–615 (2008)CrossRefGoogle Scholar
  10. 10.
    Mashaly, E.S., Ebrahim, T.M., Abou-Elfath, H., Ebrahim, O.A.: Evaluating the vertical vibration response of footbridges using a response spectrum approach. Alex. Eng. J. 52, 419–424 (2013)CrossRefGoogle Scholar
  11. 11.
    Ingólfsson, E.T., Georgakis, C.T.: A stochastic load model for pedestrian-induced lateral forces on footbridges. Eng. Struct. 33, 3454–3470 (2011)CrossRefGoogle Scholar
  12. 12.
    Piccardo, G., Tubino, F.: Equivalent spectral model and maximum dynamic response for the serviceability analysis of footbridges. Eng. Struct. 40, 445–456 (2012)CrossRefGoogle Scholar
  13. 13.
    Sachse, R., Pavic, A., Reynolds, P.: Parametric study of modal properties of damped two-degree-of-freedom crowd-structure dynamic systems. J. Sound Vib. 274, 461–480 (2004)CrossRefGoogle Scholar
  14. 14.
    Reynolds, P., Pavic, A., Ibrahim, Z.: Changes of modal properties of a stadium structure occupied by a crowd. In: Proceedings of XXII International Modal Analysis Conference (IMAC), Orlando (2004)Google Scholar
  15. 15.
    Cappellini, A., Cattaneo, A., Manzoni, S., Scaccabarozzi, M., Vanali, M.: Effects of people occupancy on the modal properties of a stadium grandstand. In: Proceedings of XXXIII International Modal Analysis Conference (IMAC), Orlando (2015)Google Scholar
  16. 16.
    Busca, G., Cappellini, A., Manzoni, S., Tarabini, M., Vanali, M.: Quantification of changes in modal parameters due to the presence of passive people on a slender structure. J. Sound Vib. 333, 5641–5652 (2014)CrossRefGoogle Scholar
  17. 17.
    Cappellini, A., Manzoni, S., Vanali, M., Cigada, A.: Evaluation of the dynamic behaviour of steel staircases damped by the presence of people. Eng. Struct. 115, 165–178 (2016)CrossRefGoogle Scholar
  18. 18.
    Vanali, M., Berardengo, M., Manzoni, S.: Numerical model for human induced vibrations. In: International Modal Analysis Conference, IMAC XXXV, January 30–February 2 2017, Garden Grove (2017)Google Scholar
  19. 19.
    Toso, M.A., Gomes, H.M., Da Silva, F.T., Pimentel, R.L.: Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations. Mech. Syst. Signal Process. 72–73, 590–606 (2016)CrossRefGoogle Scholar
  20. 20.
    Caprani, C.C., Ahmadi, E.: Formulation of human–structure interaction system models for vertical vibration. J. Sound Vib. 377, 346–367 (2016)CrossRefGoogle Scholar
  21. 21.
    Setareh, M.: Vibrations due to walking in a long-cantilevered office building structure. J. Perform. Constr. Facil. 26, 255–270 (2012)CrossRefGoogle Scholar
  22. 22.
    EN1990-Eurocode 2002 Basis of structural designGoogle Scholar
  23. 23.
    Sètra 2006 Technical guide – assessment of vibrational behaviour of footbridges under pedestrian loading. Service d’Etudes techniques des routes et autoroutesGoogle Scholar
  24. 24.
    ISO10137 2007 International Organization for Standardization – Bases for design of structures – serviceability of buildings and walkways against vibrationGoogle Scholar
  25. 25.
    Caprioli, A., Reynolds, P., Vanali, M.: Evaluation of serviceability assessment measures for different stadia structures and different live concert events. In: Proceedings of XXV International Modal Analysis Conference (IMAC), Orlando (2007)Google Scholar
  26. 26.
    Caprioli, A., Vanali, M.: Comparison of different serviceability assessment measures for different events held in the G. Meazza stadium in Milano. In: Proceedings of XXVII International Modal Analysis Conference (IMAC), Orlando (2009)Google Scholar
  27. 27.
    Institution of Structural Engineers 2008 Dynamic performance requirements for permanent grandstands subject to crowd action: recommendations for management, design and assessmentGoogle Scholar
  28. 28.
    Ewins, D.J.: Modal Testing: Theory, Practice and Application. Research Studies Press Ltd., Baldock (2000)Google Scholar
  29. 29.
    Brandt, A.: Noise and Vibration Analysis – Signal Analysis and Experimental Procedures. Wiley, Chichester (2011)CrossRefGoogle Scholar
  30. 30.
    Tarabini, M., Solbiati, S., Saggin, B., Scaccabarozzi, D.: Setup for the measurement of apparent mass matrix of standing subjects. IEEE Trans. Instrum. Meas. 65, 1856–1864 (2016)CrossRefGoogle Scholar
  31. 31.
    Matsumoto, Y., Griffin, M.J.: Mathematical models for the apparent masses of standing subjects exposed to vertical whole-body vibration. J. Sound Vib. 260, 431–451 (2003)CrossRefGoogle Scholar
  32. 32.
    Matsumoto, Y., Griffin, M.J.: Dynamic response of the standing human body exposed to vertical vibration: influence of posture and vibration magnitude. J. Sound Vib. 212, 85–107 (1998)CrossRefGoogle Scholar
  33. 33.
    Peeters, B., Van Der, A.H., Guillaume, P., Leuridan, J.: The PolyMAX frequency-domain method : a new standard for modal parameter estimation? Shock. Vib. 11, 395–409 (2004)CrossRefGoogle Scholar
  34. 34.
    JCGM 100:2008 2008 Evaluation of measurement data — Guide to the expression of uncertainty in measurementGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • M. Berardengo
    • 1
  • L. Drago
    • 2
  • S. Manzoni
    • 2
  • M. Vanali
    • 1
  1. 1.Dipartimento di Ingegneria e ArchitetturaUniversità degli studi di ParmaParmaItaly
  2. 2.Dipartimento di MeccanicaPolitecnico di MilanoMilanItaly

Personalised recommendations