Skip to main content

Tissue Engineering Instrumentation Based on Electrical Impedance Measurements

  • Chapter
  • First Online:
Book cover Bioimpedance in Biomedical Applications and Research
  • 1202 Accesses

Abstract

Tissue engineering can be defined as the application of the principles and methods of engineering and life sciences toward the fundamental understanding of structure-function relationships in normal and pathologic mammalian tissue and the development of biological substitutes to restore, maintain, or improve function. Despite its promising future, many challenges must be overcome before tissue engineering becomes the solution to reduce the number of deaths and injuries. Considering that cells and tissues can be characterized by their electrical properties, it is not difficult to realize that the bioelectrical impedance can be used to obtain information about physiological properties of an engineered tissue in a noninvasive and real-time way. This chapter does not intend to be an introduction to tissue engineering but to show that the application of the bioelectrical impedance technique in tissue engineering has already produced remarkable advances, including the development of commercial devices, but many aspects still need to be studied and developed because several challenges have not yet been solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, S., Wi, H., Oh, T. I., McEwan, A. L., Jun, S. C., & Woo, E. J. (2014). Continuous nondestructive monitoring method using the reconstructed three-dimensional conductivity images via GREIT for tissue engineering. Journal of Applied Mathematics, 2014.

    Google Scholar 

  • Asami, K. (2002). Characterization of heterogeneous systems by dielectric spectroscopy. Progress in Polymer Science, 27(8), 1617–1659.

    Article  Google Scholar 

  • Asami, K., Takahashi, Y., & Takashima, S. (1989). Dielectric properties of mouse lymphocytes and erythrocytes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1010(1), 49–55.

    Article  Google Scholar 

  • Bragós, R., Gámez, X., Cairó, J., Riu, P. J., & Gòdia, F. (1999). Biomass monitoring using impedance spectroscopy. Annals of the New York Academy of Sciences, 873(1), 299–305.

    Article  Google Scholar 

  • Canali, C., Mohanty, S., Heiskanen, A., Muhammad, H. B., Martinsen, Ø. G., Dufva, M., et al. (2015a). Impedance spectroscopic characterization of porosity in 3D cell culture scaffolds with different channel networks. Electroanalysis, 27(1), 193–199.

    Article  Google Scholar 

  • Canali, C., Heiskanen, A., Muhammad, H. B., Høyum, P., Pettersen, F. J., Hemmingsen, M., et al. (2015b). Bioimpedance monitoring of 3D cell culturing—Complementary electrode configurations for enhanced spatial sensitivity. Biosensors and Bioelectronics, 63, 72–79.

    Article  Google Scholar 

  • Cheneler, D., Buselli, E., Camboni, D., Anthony, C., Grover, L., Adams, M. J., et al. (2014). A bio-hybrid tactile sensor incorporating living artificial skin and an impedance sensing array. Sensors, 14(12), 23781–23802.

    Article  Google Scholar 

  • Diemert, S., Dolga, A. M., Tobaben, S., Grohm, J., Pfeifer, S., Oexler, E., et al. (2012). Impedance measurement for real time detection of neuronal cell death. Journal of Neuroscience Methods, 203(1), 69–77.

    Article  Google Scholar 

  • Dvir, T., Timko, B. P., Kohane, D. S., & Langer, R. (2011). Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology, 6(1), 13–22.

    Article  Google Scholar 

  • Giaever, I., & Keese, C. R. (1984). Monitoring fibroblast behavior in tissue culture with an applied electric field. Proceedings of the National Academy of Sciences, 81(12), 3761–3764.

    Article  Google Scholar 

  • Grimnes, S., & Martinsen, Ø. G. (2008). Bioimpedance and bioelectricity basics (2nd ed.). Oxford, UK: Academic Press.

    Google Scholar 

  • Heileman, K., Daoud, J., & Tabrizian, M. (2013). Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosensors and Bioelectronics, 49, 348–359.

    Article  Google Scholar 

  • Hildebrandt, C., & Thielecke, H. (2009). Non-invasive characterization of the osteogenic differentiation of hMSCs in 3D by impedance spectroscopy. In: World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009. Munich, Germany: Springer.

    Google Scholar 

  • Holmes, D., Pettigrew, D., Reccius, C. H., Gwyer, J. D., van Berkel, C., Holloway, J., et al. (2009). Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab on a Chip, 9(20), 2881–2889.

    Article  Google Scholar 

  • Jaatinen, L., Sippola, L., Kellomäki, M., Miettinen, S., Suuronen, R., & Hyttinen, J. (2009). Bioimpedance measurement setup for the assessment of viability and number of human adipose stem cells cultured as monolayers. In: World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009. Munich, Germany: Springer.

    Google Scholar 

  • Keese, C. R., & Giaever, I. (1994). A biosensor that monitors cell morphology with electrical fields. IEEE Engineering in Medicine and Biology, 13, 402–408.

    Article  Google Scholar 

  • Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R., & Barer, M. R. (1998). Viability and activity in readily culturable bacteria: A review and discussion of the practical issues. Antonie Van Leeuwenhoek, 73, 169.

    Article  Google Scholar 

  • K'Owino, I. O., & Sadik, O. A. (2005). Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis, 17(23), 2101–2113.

    Article  Google Scholar 

  • Markx, G. H. (2008). The use of electric fields in tissue engineering: A review. Organogenesis, 4(1), 11–17.

    Article  Google Scholar 

  • Moulton, S. E., Barisci, J. N., Bath, A., Stella, R., & Wallace, G. G. (2004). Studies of double layer capacitance and electron transfer at a gold electrode exposed to protein solutions. Electrochimica Acta, 49(24), 4223–4230.

    Article  Google Scholar 

  • Robert, L., Langer, R., & Vacanti, J. P. (Eds.). (2011). Principles of tissue engineering. Burlington, MA: Academic Press.

    Google Scholar 

  • Sarró, E., Lecina, M., Fontova, A., Solà, C., Gòdia, F., Cairó, J. J., et al. (2012). Electrical impedance spectroscopy measurements using a four-electrode configuration improve on-line monitoring of cell concentration in adherent animal cell cultures. Biosensors and Bioelectronics, 31(1), 257–263.

    Article  Google Scholar 

  • Sarró, E., Lecina, M., Fontova, A., Gòdia, F., Bragós, R., & Cairó, J. J. (2016). Real-time and on-line monitoring of morphological cell parameters using electrical impedance spectroscopy measurements. Journal of Chemical Technology and Biotechnology, 91, 1755–1762.

    Article  Google Scholar 

  • Wright, J. E. I., Cosman, N. P., Fatih, K., Omanovic, S., & Roscoe, S. G. (2004). Electrochemical impedance spectroscopy and quartz crystal nanobalance (EQCN) studies of insulin adsorption on Pt. Journal of Electroanalytical Chemistry, 564, 185–197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Nogueira de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Souza, M.N. (2018). Tissue Engineering Instrumentation Based on Electrical Impedance Measurements. In: Simini, F., Bertemes-Filho, P. (eds) Bioimpedance in Biomedical Applications and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-74388-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74388-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74387-5

  • Online ISBN: 978-3-319-74388-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics