Skip to main content

Body Composition by Bioelectrical Impedance Analysis

  • Chapter
  • First Online:
Bioimpedance in Biomedical Applications and Research

Abstract

The evaluation of the total body composition by discriminating its different components is a very useful tool in clinical practice. Bioelectrical impedance analysis (BIA) has become a good tool for this assessment. The technique relies upon electrical properties of the body that were described since 1871 and has the possibility of estimating extracellular fluid/intracellular fluid volume ratio. Changes in this ratio underlie many critical clinical conditions and diseases. In this chapter, its principles, assumptions, and clinical uses in its various modalities are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aaron, R., & Shiffman, C. A. (2000). Using localized impedance measurements to study muscle changes in injury and disease. Annals of the New York Academy of Sciences, 904, 171–180.

    Article  Google Scholar 

  • Aguilar-Moreno, M., Galicia-Castillo, O. R., Aguilera-Reyes, U., Varea-Gonzalez, C., Bernis-Carro, C., & García-López, G. I. (2015). Hormonal state comparison (progesterone, estradiol, and leptin) of body fat and body mass indices in Mexican women as a risk factor for neonatal physiologic condition. Journal of Pediatric and Adolescent Gynecology, 28(3), 149–156. https://doi.org/10.1016/j.jpag.2014.06.007.

    Article  Google Scholar 

  • Baker, L. E. (1989). Principles of the impedance technique. IEEE Engineering in Medicine and Biology Magazine, 8, 11–15.

    Article  Google Scholar 

  • Barbosa-Silva, M. C., Barros, A. J., Wang, J., Heymsfield, S. B., & Pierson, R. N., Jr. (2005). Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. The American Journal of Clinical Nutrition, 82(1), 49–52.

    Article  Google Scholar 

  • Barrera-Ariza, L., Gonzalez-Correa, C. H., & Gonzalez-Correa, C. A. (2009). Quality of reporting of bioelectrical impedance analysis (BIA) studies evaluating body fluid volumes: The need for standardization. Ifmbe. 2009. Proceedings ISSN: 1680-0737 ed: Springer v.25 fasc.VII (pp. 244–246).

    Google Scholar 

  • Batsis, J. A., Mackenzie, T. A., Barre, L. K., Lopez-Jimenez, F., & Bartels, S. J. (2014). Sarcopenia, sarcopenic obesity and mortality in older adults: Results from the National Health and Nutrition Examination Survey III. European Journal of Clinical Nutrition, 68(9), 1001–1007. https://doi.org/10.1038/ejcn.2014.117. Epub 2014 Jun 25.

    Article  Google Scholar 

  • Baumgartner, R. N. (1996). Electrical impedance and total body electrical conductivity in human body composition. Human Kinetics United States. In F. R. Alex, B. H. Steven, & G. L. Timothy (Eds.), Human body composition (pp. 79–107). Champaign: Human Kinetics.

    Google Scholar 

  • Bi, X., Tey, S. L., Leong, C., Quek, R., & Henry, C. J. (2016). Prevalence of vitamin D deficiency in Singapore: Its implications to cardiovascular risk factors. PLoS One, 11(1), e0147616. https://doi.org/10.1371/journal.pone.0147616. eCollection 2016.

    Article  Google Scholar 

  • Bosy-Westphal, A., Danielzik, S., Dörhöfer, R. P., Later, W., Wiese, S., & Müller, M. J. (2006). Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. JPEN Journal of Parenteral and Enteral Nutrition, 30(4), 309–316.

    Article  Google Scholar 

  • Bouchi, R., Takeuchi, T., Akihisa, M., Ohara, N., Nakano, Y., Nishitani, R., et al. (2015). High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with Type 2 diabetes. Cardiovascular Diabetology, 14(1), 136.

    Article  Google Scholar 

  • Bronhara, B., Piccoli, A., & Pereira, J. C. (2012). Fuzzy linguistic model for bioelectrical impedance vector analysis. Clinical Nutrition, 31, 710–716.

    Article  Google Scholar 

  • Brozek, J., Grande, F., Anderson, J. T., & Keys, A. (1963). Densitometric analysis of body composition: Revision of some quantitative assumptions. Annals of the New York Academy of Sciences, 110, 113–140.

    Article  Google Scholar 

  • Caicedo-Eraso, J. C., Gonzalez-Correa, C. H., & Gonzalez-Correa, C. A. (2012). Use of electrocardiogram (ECG) electrodes for bioelectrical impedance analysis (BIA). In Journal of Physics: Conference Series ISSN: 1742-6588 ed: Institute of Physics Publishing (IOP) v.407 fasc.012008 (pp. 1–8).

    Google Scholar 

  • Chumlea, W. C., Guo, S. S., Bellisari, A., Baumgartner, R. N., & Siervogel, R. M. (1994). Reliability of multiple frequency bioelectric impedance. American Journal of Human Biology, 6, 195–202.

    Article  Google Scholar 

  • CLABIO. (2012). First Latin-American Conference on Bioimpedance. CLABIO 2012. Consulted on October 16, 2016. http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=20311&copyownerid=2.

  • Colina, G. E., González Correa, C. A., & Miranda, M. D. A. (2016). Miografía por impedancia eléctrica, electrical impedance myography. Revista Colombiana de Medicina Física y Rehabilitación, 26(1), 38–49.

    Article  Google Scholar 

  • Cornish, B. H., & Ward, L. C. (1998). Data analysis in multiple-frequency bioelectrical impedance analysis. Physiological Measurement, 19, 275–283.

    Article  Google Scholar 

  • Cox-Reijven, P., & Soeters, P. (2000). Validation of bio-impedance spectroscopy: Effects of degree of obesity and ways of calculating volumes from measured resistance values. International Journal of Obesity, 24, 271–280.

    Article  Google Scholar 

  • Cubo, E., Rivadeneyra, J., Gil-Polo, C., Armesto, D., Mateos, A., & Mariscal-Pérez, N. (2015). Body composition analysis as an indirect marker of skeletal muscle mass in Huntington’s disease. Journal of the Neurological Sciences, 358(1–2), 335–338. https://doi.org/10.1016/j.jns.2015.09.351. Epub 2015 Sep 15.

    Article  Google Scholar 

  • Dąbrowski, W., Kotlinska-Hasiec, E., Jaroszynski, A., Zadora, P., Pilat, J., Rzecki, Z., et al. (2015). Intra-abdominal pressure correlates with extracellular water content. PLoS One, 10(4), e0122193. https://doi.org/10.1371/journal.pone.0122193. eCollection 2015.

    Article  Google Scholar 

  • Deurenberg, P., & Deurenberg Yap, M. (2002). Validation of skinfold thickness and hand-held impedance measurements for estimation of body fat percentage among Singaporean Chinese, Malay and Indian subjects. Asia Pacific Journal of Clinical Nutrition, 11, 1–7.

    Article  Google Scholar 

  • Deurenberg, P., Van der Kooy, K., Leenen, R., Weststrate, J., & Seidell, J. (1991). Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: A cross-validation study. International Journal of Obesity, 15, 17–25.

    Google Scholar 

  • Electronic Engineering Trade Group. (1971). Basic electricity (2nd ed.). London: H.M. Stationary Off.

    Google Scholar 

  • Ellis, K. J., & Wong, W. W. (1998). Human hydrometry: Comparison of multifrequency bioelectrical impedance with 2H2O and bromine dilution. Journal of Applied Physiology, 85, 1056–1062.

    Article  Google Scholar 

  • Ellis, K. J., Bell, S. J., Chertow, G. M., Chumlea, W. C., Knox, T. A., Kotler, D. P., et al. (1999). Bioelectrical impedance methods in clinical research: A follow-up to the NIH Technology Assessment Conference. Nutrition, 15(11–12), 874–880.

    Article  Google Scholar 

  • Espinosa-Cuevas, M. A., Rivas-Rodríguez, L., González-Medina, E. C., Atilano-Carsi, X., Miranda-Alatriste, P., & Correa-Rotter, R. (2007). Vectores de impedancia en población mexicana. Revista de Investigación Clínica, 59(1), 15–24.

    Google Scholar 

  • Foster, K. R., & Lukaski, H. C. (1996). Whole-body impedance. What does it measure? American Journal of Clinical Nutrition, 64, 388s–396s.

    Article  Google Scholar 

  • Foster, K. R., & Schwan, H. P. (1989). Dielectric properties of tissues and biological materials: A critical review. Critical Reviews in Biomedical Engineering, 17, 25–104.

    Google Scholar 

  • García-Jiménez, C., Gutierrez-Salmeron, M., Chocarro-Calvo, A., Garcia-Martinez, J. M., Castaño, A., & De la Vieja, A. (2016). From obesity to diabetes and cancer: Epidemiological links and role of therapies. British Journal of Cancer, 114(7), 716–722.

    Article  Google Scholar 

  • Ghosh, S., Meister, D., Cowen, S., Hannan, J. W., & Ferguson, A. (1997). Body composition at the bedside. European Journal of Gastroenterology & Hepatology, 9, 783–788.

    Article  Google Scholar 

  • Gonzalez, C. H., Oldroyd, B., Evans, J. A., Smye, S. W., & Holland, P. (2000). Standardized limb abduction for bioimpedance measurements using position restraints. Physiological Measurement, 21(2), 263–270.

    Article  Google Scholar 

  • Gonzalez-Correa, C. A., Gonzalez-Correa, C. H., & Ramos-Rodriguez, A. (2007). Best published equation for the calculation of body fat in a sample of Colombian young males using bioelectrical impedance analysis. In H. Scharfetter & R. Merwa (Eds.), Proceedings of the 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography: ICEBI 2007, August 29th–September 2nd 2007, Graz, Austria (pp. 803–806). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Gonzalez-Correa, C. H., & Caicedo-Eraso, J. C. (2012). Bioelectrical impedance analysis (BIA): A proposal for standardization of the classical method in adults. In Journal of Physics: Conference Series ISSN: 1742-6588 ed: Institute of Physics Publishing (IOP) v.407 fasc.012018 (pp. 1–13).

    Google Scholar 

  • Gonzalez-Correa, C. H., Evans, A., Smye, S., & Holland, P. (2002). Total body water measurement using bioelectrical impedance analysis, isotope dillution and total body potassium: A scoring system to facilitate intercomparison. In Netherlands European Journal of Clinical Nutrition ISSN: 0954-3007 ed: John Libbey v.56 fasc.N/A (pp. 326–337).

    Google Scholar 

  • Gonzalez-Correa, C. H., Evans, J. A., Smye, S., & Holland, P. (1999). Variables affecting BIA measurements of body water. Medical & Biological Engineering & Computing, 37(2), 106–107.

    Google Scholar 

  • Graves, J. E.. Pollock, M. L. Colvinl, A. B. Van Loan M., And Lohman T. G. Comparison of different bioelectrical impedance analyzers in the prediction of body composition. American Journal Of Human Biology. 1989 1 :603–611.

    Article  Google Scholar 

  • Guldrís, S. C. (2011). Aplicaciones futuras de la bioimpedancia vectorial (BIVA) en nefrología. Future uses of vectorial bioimpedance (BIVA) in nephrology. Nefrología (Madrid), 31(6), 635–643.

    Google Scholar 

  • Hannan, W. J., Cowen, S. J., Fearson, K. C. H., Plester, C. E., Falconer, J. S., & Richardson, R. A. (1994). Evaluation of multi-frequency bioimpedance analysis for the assessment of extracellular and total body water in surgical patients. Clinical Science, 86, 479–485.

    Article  Google Scholar 

  • Heyward, V. H., & Stolarczyk, L. M. (1996). Applied body composition assessment. Champaign: Human Kinetics.

    Google Scholar 

  • Hoffer, E. C., Meador, C. K., & Simpson, D. C. (1969). Correlation of whole-body impedance with total body water volume. Journal of Applied Physiology, 27, 531–534.

    Article  Google Scholar 

  • Jaffrin, M. Y., & Morel, H. (2008). Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (bis) and bioimpedance analysis (bia) methods. Medical Engineering & Physics, 30, 1257–1269.

    Article  Google Scholar 

  • Jahangir, E., De Schutter, A., & Lavie, C. J. (2014). The relationship between obesity and coronary artery disease. Translational Research, 164(4), 336–344. https://doi.org/10.1016/j.trsl.2014.03.010. Review.

    Article  Google Scholar 

  • Janssen, I., Heymsfield, S. B., Baumgartner, R. N., & Ross, R. (2000). Estimation of skeletal muscle mass by bioelectrical impedance analysis. Journal of Applied Physiology, 89, 465–471.

    Article  Google Scholar 

  • Jones Sarah, L., Tanaka, A., Eastwood, G. M., Young, H., Peck, L., Bellomo, R., et al. (2015). Bioelectrical impedance vector analysis in critically ill patients: A prospective, clinician blinded investigation. Critical Care, 19, 290. https://doi.org/10.1186/s13054-015-1009-3.

    Article  Google Scholar 

  • Kalnina, L., Sauka, M., Timpka, T., Dahlstrom, O., Nylander, E., Selga, G., et al. (2015). Body fat in children and adolescents participating in organized sports: Descriptive epidemiological study of 6048 Latvian athletes. Scandinavian Journal of Public Health, 43(6), 615–622. https://doi.org/10.1177/1403494815581696

    Article  Google Scholar 

  • Kasvis, P., Cohen, T. R., Loiselle, S. È., Kim, N., Hazell, T. J., Vanstone, C. A., et al. (2015). Foot-to-foot bioelectrical impedance accurately tracks direction of adiposity change in overweight and obese 7- to 13-year-old children. Nutrition Research, 35(3), 206–213. https://doi.org/10.1016/j.nutres.2014.12.012.

    Article  Google Scholar 

  • Kendall, B. J., Macdonald, G. A., Prins, J. B., O’Brien, S., & Whiteman, D. C. (2014). Study of digestive health. Total body fat and the risk of Barrett’s oesophagus - A bioelectrical impedance study. Cancer Epidemiology, 38(3), 266–272. https://doi.org/10.1016/j.canep.2014.03.006. Epub 2014 Apr.

    Article  Google Scholar 

  • Khalil, S. F. (2014). The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors, 14(6), 10895–10928. https://doi.org/10.3390/s140610895.

    Article  Google Scholar 

  • Kim, J. Y., Kim, J. Y., Han, S. H., & Yang, B. M. (2013). Implication of high-body fat percentage on cardiometabolic risk in middle-aged, healthy, normal-weight adults. Obesity (Silver Spring), 21(8), 1571–1577.

    Article  Google Scholar 

  • Klement, R. J., & Sweeney, R. A. (2016). Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients. BMC Research Notes, 9, 143. https://doi.org/10.1186/s13104-016-1959-9.

    Article  Google Scholar 

  • Kushner, R. F. (1992). Bioelectrical impedance analysis: A review of principles and applications. Journal of the American College of Nutrition, 11, 199–209.

    MathSciNet  Google Scholar 

  • Kushner, R. F., Gudivaka, R., & Schoeller, D. A. (1996). Clinical characteristics influencing bioelectrical impedance analysis measurements. The American Journal of Clinical Nutrition, 64, 423S–427S.

    Article  Google Scholar 

  • Kushner, R. F., & Schoeller, D. A. (1986). Estimation of total wáter by bioelectrical impedance analysis. The American Journal of Clinical Nutrition, 44(3), 417–424.

    Article  Google Scholar 

  • Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Gómez, J. M., et al. (2004a). Bioelectrical impedance analysis—Part I: Review of principles and methods. Clinical Nutrition, 23, 1226–1243.

    Article  Google Scholar 

  • Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Manuel Gomez, J., et al. (2004b). Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clinical Nutrition, 23, 1430–1453.

    Article  Google Scholar 

  • Lee, S. Y., & Gallagher, D. (2008). Assessment methods in human body composition. Current Opinion in Clinical Nutrition & Metabolic Care, 11(5), 566–572.

    Article  Google Scholar 

  • Lingwood, B. E., Coghlan, J. P., Ward, L. C., Charles, B. G., & Colditz, P. B. (1999). Prediction of aminoglycoside distribution space in neonates by multiple frequency impedance analysis. European Journal of Pharmacology, 55, 671–676.

    Google Scholar 

  • Lu, H.-K., Chiang, L.-M., Chen, Y.-Y., Chuang, C.-L., Chen, K.-T., Dwyer, G. B., et al. (2016). Hand-to-hand model for bioelectrical impedance analysis to estimate fat free mass in a healthy population. Nutrients, 8(10), 654. Published online 2016 Oct 21. https://doi.org/10.3390/nu8100654

    Article  Google Scholar 

  • Lukaski, H. (2013). Evolution of bioimpedance: A circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. European Journal of Clinical Nutrition, 67, S2–S9.

    Article  Google Scholar 

  • Lukaski, H. C. (1996). Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. The American Journal of Clinical Nutrition, 64, 524S–532S.

    Article  Google Scholar 

  • Lukaski, H. C., Bolonchuk, W. W., Hall, C. B., & Siders, W. A. (1986). Validation of tetrapolar bioelectrical impedance method to assess human body composition. Journal of Applied Physiology, 60, 1327–1332.

    Article  Google Scholar 

  • Lukaski, H. C., Johnson, P. E., Bolonchuk, W., & Lykken, G. (1985). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American Journal of Clinical Nutrition, 41, 810–817.

    Article  Google Scholar 

  • Marini, E., Sergi, G., Succa, V., Saragat, B., Sarti, S., Coin, A., et al. (2013). Efficacy of specific bioelectrical impedance vector analysis (biva) for assessing body composition in the elderly. The Journal of Nutrition, Health & Aging, 17, 515–521.

    Article  Google Scholar 

  • Marini, E., Buffa, R., Saragat, B., Coin, A., Toffanello, E. D., Berton, L., et al. (2012). The potential of classic and specific bioelectrical impedance vector analysis for the assessment of sarcopenia and sarcopenic obesity. Clinical Interventions in Aging, 7, 585–591. https://doi.org/10.2147/CIA.S38488.

    Article  Google Scholar 

  • Mialich, M. S., Sicchieri, J. M. F., & Junior, A. A. J. (2014). Analysis of body composition: A critical review of the use of bioelectrical impedance analysis. International Journal of Clinical Nutrition, 2, 1–10.

    Google Scholar 

  • Mikes, D. M., Cha, B. A., Dym, C. L., Baumgartner, J., Hartzog, A. G., Tracey, A. D., et al. (1999). Bioelectrical impedance analysis revisited. Limphology, 32, 157–165.

    Google Scholar 

  • Mulasi, U., Kuchnia, A. J., Cole, A. J., & Earthman, C. P. (2015). Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutrition in Clinical Practice, 30(2), 180–193. https://doi.org/10.1177/0884533614568155. Epub 2015 Jan 22.

    Article  Google Scholar 

  • Mulasi, U., Kuchnia, A. J., Cole, A. J., & Earthman, C. P. (2015). Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutrition in Clinical Practice, 30(2), 180–193. https://doi.org/10.1177/0884533614568155

    Article  Google Scholar 

  • Nunes, F. F., Bassani, L., Fernandes, S. A., Deutrich, M. E., Pivatto, B. C., & Marroni, C. A. (2016). Food consumption of cirrhotic patients, comparison with the nutritional status and disease staging. Arquivos de Gastroenterologia, 53(4), 250–256. https://doi.org/10.1590/S0004-28032016000400008.

    Article  Google Scholar 

  • Nuñez, C., Gallagher, D., Visser, M., Pi-Sunyer, F. X., Wang, Z., & Heymsfield, S. B. (1997). Bioimpedance analysis: Evaluation of leg-to-leg system based on pressure contact footpad electrodes. Medicine and Science in Sports and Exercise, 29, 524–531.

    Article  Google Scholar 

  • Oldham, N. M. (1996). Overview of bioelectrical impedance analyzers. The American Journal of Clinical Nutrition, 64(3 Suppl), 405S–412S.

    Article  Google Scholar 

  • Organ, L. W., Bradham, G. B., Gore, D. T., & Lozier, S. L. (1994). Segmental bioelectrical impedance analysis: Theory and application of a new technique. Journal of Applied Physiology (1985), 77(1), 98–112.

    Article  Google Scholar 

  • Patterson, R. (1989). Body fluid determinations using multiple impedance measurements. IEEE Engineering in Medicine and Biology Magazine, 8, 16–18.

    Article  Google Scholar 

  • Piccoli, A., Rossi, B., Pillon, L., & Bucciante, G. (1994). A new method for monitoring body fluid variation by bioimpedance analysis: The rxc graph. Kidney International, 46, 534–539.

    Article  Google Scholar 

  • Piuri, G., Ferrazzi, E., Bulfoni, C., Mastricci, L., Di Martino, D., & Speciani, A. F. (2016). Longitudinal changes and correlations of bioimpedance and anthropometric measurements in pregnancy: Simple possible bed-side tools to assess pregnancy evolution. The Journal of Maternal-Fetal & Neonatal Medicine, 14, 1–7. [Epub ahead of print].

    Google Scholar 

  • Rutkove, S. B., Aaron, R., & Shiffman, C. A. (2002). Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle & Nerve, 25, 390–397.

    Article  Google Scholar 

  • Sakaguchi, T., Yasumura, K., Nishida, H., Inoue, H., Furukawa, T., Shinouchi, K., et al. (2015). Quantitative assessment of fluid accumulation using bioelectrical impedance analysis in patients with acute decompensated heart failure. Circulation Journal, 79(12), 2616–2622. https://doi.org/10.1253/circj.CJ-15-0723. Epub 2015 Oct 16.

    Article  Google Scholar 

  • Sanchez, B., Bandarenka, A. S., Vandersteen, G., Schoukens, J., & Bragos, R. (2013). Novel approach of processing electrical bioimpedance data using differential impedance analysis. Medical Engineering & Physics, 35(9), 1349–1357. https://doi.org/10.1016/j.medengphy.2013.03.006. Epub 2013 Apr 17.

    Article  Google Scholar 

  • Sanders, J. E., Harrison, D. S., Cagle, J. C., Myers, T. R., Ciol, M. A., & Allyn, K. J. (2012). Post-doffing residual limb fluid volume change in people with trans-tibial amputation. Prosthetics and Orthotics International, 36(4), 443–449. https://doi.org/10.1177/0309364612444752. Epub 2012 May 15.

    Article  Google Scholar 

  • Scheltinga, M. R., Jacobs, D. O., Kimbrough, T. D., & Wilmore, D. W. (1992). Identifying body fluid distribution by measuring electrical impedance. The Journal of Trauma, 33, 665–670.

    Article  Google Scholar 

  • Selberg, O., & Selberg, D. (2002). Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. European Journal of Applied Physiology, 86(6), 509–516.

    Article  Google Scholar 

  • Siri, W. E. (1961). Body composition from fluid space and density. In J. Brozek & A. Hanschel (Eds.), Techniques for measuring body composition (pp. 223–244). Washington, DC: National Academy of Science.

    Google Scholar 

  • Smith, J. (2004). Body composition assessment and relationship to disease. http://www.ideafit.com/fitness-library/body-composition-and-relationship-to-diseaseassess-ment.

  • Smye, S. W., Sutcliffe, J., & Pitt, E. A. (1993). Comparison of four commercial systems used to measure whole-body electrical impedance. Physiological Measurement, 14(4), 473–478.

    Article  Google Scholar 

  • Tanaka, N. I., Miyatani, M., Masuo, Y., Fukunaga, T., & Kanehisa, H. (2007). Applicability of a segmental bioelectrical impedance analysis for predicting the whole body skeletal muscle volume. Journal of Applied Physiology, 103, 1688–1695.

    Article  Google Scholar 

  • Thomasset, A. (1962). Bio-electrical properties of tissue impedance measurements. Lyon Médical, 207, 107–118.

    Google Scholar 

  • Uchiyama, T., Nakayama, T., & Kuru, S. (2017). Muscle development in healthy children evaluated by bioelectrical impedance analysis. Muscle development in healthy children evaluated by bioelectrical impedance analysis. Brain Dev, 39(2), 122–129. https://doi.org/10.1016/j.braindev.2016.08.013. Epub 2016 Sep 21.

    Article  Google Scholar 

  • Wagner, D. R., & Heyward, V. H. (1999). Techniques of body composition assessment: A review of laboratory and field methods. Research Quarterly for Exercise and Sport, 70(2), 135–149.

    Article  Google Scholar 

  • Wang, L., Hui, S. S., & Wong, S. H. (2014). Validity of bioelectrical impedance measurement in predicting fat-free mass of Chinese children and adolescents. Medical Science Monitor, 20, 2298–2310. https://doi.org/10.12659/MSM.890696.

    Article  Google Scholar 

  • Wang, Z. M., Pierson, R. N., Jr., & Heymsfield, S. B. (1992). The five-level model: A new approach to organizing body-composition research. The American Journal of Clinical Nutrition, 56, 19–28.

    Article  Google Scholar 

  • Ward, L., Winall, A., Isenring, E., et al. (2011). Assessment of bilateral limb lymphedema by bioelectrical impedance spectroscopy. International Journal of Gynecological Cancer, 21, 409–418.

    Article  Google Scholar 

  • Ward, L. C. (2012). Segmental bioelectrical impedance analysis: An update. Current Opinion in Clinical Nutrition and Metabolic Care, 15(5), 424–429.

    Article  Google Scholar 

  • Wells, J. C. K., & Fewtrell, M. S. (2006). Measuring body composition. Archives of Disease in Childhood, 91(7), 612–617. https://doi.org/10.1136/adc.2005.085522.

    Article  Google Scholar 

  • Weyer, S., Zink, M. D., Wartzek, T., Leicht, L., Mischke, K., Vollmer, T., et al. (2014). Bioelectrical impedance spectroscopy as a fluid management system in heart failure. Physiological Measurement, 35(6), 917.

    Article  Google Scholar 

  • Wizemann, V., Wabel, P., Chamney, P., Zaluska, W., Moissl, U., Rode, C., et al. (2009). The mortality risk of overhydration in haemodialysis patients. Nephrology Dialysis Transplantation., 24, 1574–1579.

    Article  Google Scholar 

  • Wu, C., Wang, X., Yu, W., Li, P., Liu, S., Li, J., et al. (2016). Short-term consequences of continuous renal replacement therapy on body composition and metabolic status in sepsis. Asia Pacific Journal of Clinical Nutrition, 25(2), 300–307. https://doi.org/10.6133/apjcn.2016.25.2.29.

    Google Scholar 

  • Wu, C.-S., Chen, Y.-Y., Chuang, C.-L., Chiang, L.-M., Dwyer, G. B., Hsu, Y.-L., et al. (2015). Predicting body composition using foot-to-foot bioelectrical impedance analysis in healthy Asian individuals. Nutrition Journal, 14, 52. Published online 2015 May 19. https://doi.org/10.1186/s12937-015-0041-0

    Article  Google Scholar 

  • Yamaguchi, C. M., Faintuch, J., Silva, M. M., Modolin, M., Hayashi, S. Y., & Cecconello, I. (2012). Interference of silicone breast implants on bioimpedance measurement of body fat. Clinical Nutrition, 31(4), 574–576.

    Article  Google Scholar 

  • Yu, S. C., Powell, A., Khow, K. S., & Visvanathan, R. (2016). The performance of five bioelectrical impedance analysis prediction equations against dual X-ray absorptiometry in estimating appendicular skeletal muscle mass in an adult Australian population. Nutrients, 8(4), 189. https://doi.org/10.3390/nu8040189.

    Article  Google Scholar 

  • Zaslavsky, O., Rillamas-Sun, E., Li, W., Going, S., Datta, M., Snetselaar, L., et al. (2016). Association of dynamics in lean and fat mass measures with mortality in frail older women. The Journal of Nutrition, Health & Aging, 21(1), 112–119.

    Article  Google Scholar 

  • Zheng, H., & Chen, C. (2015). Body mass index and risk of knee osteoarthritis: Systematic review and meta-analysis af prospective studies. BMJ Open, 5(12), e007568.

    Article  Google Scholar 

  • Ziai, S., Coriati, A., Chabot, K., Mailhot, M., Richter, M. V., & Rabasa-Lhoret, R. (2014). Agreement of bioelectric impedance analysis and dual-energy X-ray absorptiometry for body composition evaluation in adults with cystic fibrosis. Journal of Cystic Fibrosis, 13, 585–588. https://doi.org/10.1016/j.jcf.2014.01.006

    Article  Google Scholar 

  • Zhu, F., Kuhlman, M., Kotanko, P., Handelman, G., Leonard, E., & Levin, N. (2007). A device for monitoring hydration state in hemodialysis patients using a calf bioimpedance technique. In Proceedings of the 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, Graz, Austria, 29 August–2 September 2007 (pp. 775–778).

    Google Scholar 

  • Zhu, F., Schneditz, D., & Levin, N. W. (1999). Sum of segmental bioimpedance analysis during ultrafiltration and hemodialysis reduces sensitivity to changes in body position. Kidney International, 56, 692–699.

    Article  Google Scholar 

  • Zink, M. D., Weyer, S., Pauly, K., Napp, A., Dreher, M., Leonhardt, S., et al. (2015). Feasibility of bioelectrical impedance spectroscopy measurement before and after thoracentesis. BioMed Research International, 2015, 810797. https://doi.org/10.1155/2015/810797.

    Google Scholar 

  • Ziomkiewicz, A., Ellison, P. T., Lipson, S. F., Thune, I., & Jasienska, G. (2008). Body fat, energy balance, and estradiol levels: A study based on hormonal profiles from complete menstrual cycles. Human Reproduction, 23(11), 2555–2563.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Helena González-Correa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Correa, C.H. (2018). Body Composition by Bioelectrical Impedance Analysis. In: Simini, F., Bertemes-Filho, P. (eds) Bioimpedance in Biomedical Applications and Research. Springer, Cham. https://doi.org/10.1007/978-3-319-74388-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74388-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74387-5

  • Online ISBN: 978-3-319-74388-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics