Substrate Modeling with Parasitic Transistors

  • Pietro Buccella
  • Camillo Stefanucci
  • Maher Kayal
  • Jean-Michel Sallese
Part of the Analog Circuits and Signal Processing book series (ACSP)


Parasitic substrate currents are strongly related to the propagation of minority carriers inside the chip. Modeling these phenomena requires analytical solutions of transport equations that are available only in the low-current regime. In HV integrated circuits, it is important to solve the charge transport equation for the high-current regime as well, but a closed-form solution of the mathematical model does not exist neither in one nor in three dimensions. In this chapter the substrate modeling methodology based on generalized lumped devices is detailed to overcome this limitation. The approach relies on a discretization scheme for the continuity equations for electrons and holes and introduces a specific concept for meshing the substrate. The mathematical derivation of the nonlinear model is detailed along with the substrate partitioning involving orthogonal cuboids. The transport equations are then converted into virtual voltages and currents that can be solved by circuit simulators. Equivalent circuits for the substrate, the junctions, and the contacts are then proposed, also including time-dependent effects.


  1. 1.
    A.F. Franz, G.A. Franz, S. Selberherr, C. Ringhofer, P. Markowich, Finite boxes - a generalization of the finite-difference method suitable for semiconductor device simulation. IEEE Trans. Electron Devices 30(9), 1070–1082 (1983)CrossRefGoogle Scholar
  2. 2.
    V. Binet, Y. Savaria, M. Meunier, Y. Gagnon, Modeling the substrate noise injected by a DC-DC converter, in IEEE International Symposium on Circuits and Systems (ISCAS) (May 2007), pp. 309–312Google Scholar
  3. 3.
    M. Schrems, M. Knaipp, H. Enichlmair, V. Vescoli, R. Minixhofer, E. Seebacher, F. Leisenberger, E. Wachmann, G. Schatzberger, H. Gensinger, Scalable high voltage CMOS technology for smart power and sensor applications. e & i Elektrotechnik und Informationstechnik 125(4), 109–117 (2008)Google Scholar
  4. 4.
    F. Lo Conte, J.-M. Sallese, M. Pastre, F. Krummenacher, M. Kayal, Global modeling strategy of parasitic coupled currents induced by minority-carrier propagation in semiconductor substrates. IEEE Trans. Electron Devices 57(1), 263–272 (2010)CrossRefGoogle Scholar
  5. 5.
    F. Lo Conte, J.-M. Sallese, M. Kayal, Modeling methodology of high-voltage substrate minority and majority carrier injections, in Proceedings of the European Solid-State Device Research Conference (ESSDERC) (Sept 2010), pp. 194–197Google Scholar
  6. 6.
    F.J.R. Clement, E. Zysman, M. Kayal, M. Declercq, LAYIN: toward a global solution for parasitic coupling modeling and visualization, in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC) (May 1994), pp. 537–540Google Scholar
  7. 7.
    Open Verilog International, Verilog-AMS Language Reference Manual: Analog & Mixed-Signal Extension to Verilog HDL; Version 2.0 (Open Verilog International, 2000).
  8. 8.
    C. Christopoulos, The Transmission-Line Modeling Method TLM (IEEE Press, New York, 1995)CrossRefGoogle Scholar
  9. 9.
    M.Y. Al-Zeben, A.H.M. Saleh, M.A. Al-Omar, TLM modelling of diffusion, drift and recombination of charge carriers in semiconductors. Int. J. Numer. Modell. Electron. Networks Devices Fields 5(4), 219–225 (1992)CrossRefGoogle Scholar
  10. 10.
    N.D. Jankovic, T.V. Pesic, J.P. Karamarkovic, 1D physical non-quasi static BJT circuit model based on the equivalent transmission line analysis. J. Comput. Electron. 3(1), 13–24 (2004)CrossRefGoogle Scholar
  11. 11.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer Science & Business Media, 2012)Google Scholar
  12. 12.
    B.R. Stanisic, N.K. Verghese, R.A. Rutenbar, L.R. Carley, D.J. Allstot, Addressing substrate coupling in mixed-mode ICs: simulation and power distribution synthesis. IEEE J. Solid State Circuits 29(3), 226–238 (1994)CrossRefGoogle Scholar
  13. 13.
    P. Buccella, C. Stefanucci, J.-M. Sallese, M. Kayal, Spice simulation of substrate minority carriers propagation with equivalent electrical circuit, in Proceedings of the 21st International Conference Mixed Design of Integrated Circuits Systems (MIXDES) (June 2014), pp. 347–350Google Scholar
  14. 14.
    M.P. Beddoes, Some comments on Linvill’s lumped models for semiconductor devices. Proc. Inst. Electr. Eng. 112(8), 1509–1514 (1965)CrossRefGoogle Scholar
  15. 15.
    F. Lo Conte, J.-M. Sallese, M. Kayal, Smart power IC simulation of substrate coupled current due to majority and minority carriers transports, in IEEE International Conference on IC Design and Technology (ICICDT) (June 2010), pp. 168–171Google Scholar
  16. 16.
    T. Misawa, A note on the extended theory of the junction transistor. J. Phys. Soc. Jpn. 11(7), 728–739 (1956)CrossRefGoogle Scholar
  17. 17.
    C.-T. Sah, R.N. Noyce, W. Shockley, Carrier generation and recombination in P-N junctions and P-N junction characteristics. Proc. IRE 45(9), 1228–1243 (1957)CrossRefGoogle Scholar
  18. 18.
    S. Li, Y. Fu, Smart power technology and power semiconductor devices, in 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics (Springer, New York, 2012), pp. 187–236Google Scholar
  19. 19.
    J. Oehmen, L. Hedrich, M. Olbrich, E. Barke, A methodology for modeling lateral parasitic transistors in smart power ICs, in IEEE Behavioral Modeling and Simulation (BMAS) (Sept 2005), pp. 19–24Google Scholar
  20. 20.
    C. Stefanucci, P. Buccella, M. Kayal, J.M. Sallese, Impact of enhanced contact doping on minority carriers diffusion currents, in 10th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), 2014 (IEEE, New York, 2014), pp. 1–4Google Scholar
  21. 21.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, London, 2006)CrossRefGoogle Scholar
  22. 22.
    V. Milovanovic, H. Zimmermann, Analytical analysis of a p-n junction with arbitrary shaped doping profile, in 28th International Conference on Microelectronics (MIEL) (May 2012), pp. 73–76Google Scholar
  23. 23.
    M. Schenkel, Substrate current effects in smart power ICs. PhD thesis, ETH Zürich, Nr. 14925, 2003Google Scholar
  24. 24.
    R. Stella, S. Favilla, G. Croce, Novel achievements in the understanding and suppression of parasitic minority carrier currents in P- epitaxy/P++ substrate smart power technologies, in Proceedings of the IEEE 16th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (May 2004), pp. 423–426Google Scholar
  25. 25.
    A.Z.H. Wang, On-Chip ESD Protection for Integrated Circuits, An IC Design Perspective (Kluwer Academic Publishers, Dordrecht, 2006)Google Scholar
  26. 26.
    J. Li, S. Joshi, R. Barnes, E. Rosenbaum, Compact modeling of on-chip ESD protection devices using Verilog-A. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1047–1063 (2006)CrossRefGoogle Scholar
  27. 27.
    L. Wei, C.E. Gill, W. Li, R. Wang, M. Zunino, A convergence robust method to model snapback for ESD simulation, in International Semiconductor Conference (CAS), vol. 2 (Oct 2011), pp. 369–372Google Scholar
  28. 28.
    A. Gendron, C. Gill, C. Aykroyd, C. Zhan, Techniques to prevent substrate injection induced failure during ESD events in automotive applications, in Proceedings of the IEEE 23rd International Symposium on Power Semiconductor Devices and ICs (ISPSD) (May 2011), pp. 192–195Google Scholar
  29. 29.
    C. Salamero, N. Nolhier, A. Gendron, M. Bafleur, P. Besse, M. Zecri, TCAD methodology for ESD robustness prediction of smart power ESD devices. IEEE Trans. Device Mater. Reliab. 6(3), 399–407 (2006)CrossRefGoogle Scholar
  30. 30.
    K.-H. Meng, E. Rosenbaum, Layout-aware, distributed, compact model for multi-finger MOSFETs operating under ESD conditions, in Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD) (Sept 2013), pp. 1–8Google Scholar
  31. 31.
    S.L. Miller, Ionization rates for holes and electrons in silicon. Phys. Rev. 105, 1246–1249 (1957)CrossRefGoogle Scholar
  32. 32.
    S.L. Lim, X.Y. Zhang, Z. Yu, S. Beebe, R.W. Dutton, A computationally stable quasi-empirical compact model for the simulation of MOS breakdown in ESD-protection circuit design, in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (Sept 1997), pp. 161–164Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pietro Buccella
    • 1
  • Camillo Stefanucci
    • 1
  • Maher Kayal
    • 1
  • Jean-Michel Sallese
    • 2
  1. 1.STI IEL GR-KAÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.STI IEL EDALBÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations