Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 867 Accesses

Abstract

This chapter presents the design challenges regarding substrate couplings due to parasitic substrate bipolar transistors in HV ICs. The basic characteristics of HV technologies and substrate parasitic bipolar structures are identified and organized to demonstrate the main trade-offs that designers have to face. Moreover, representative circuit topologies are analyzed to show how such substrate parasitic transistors can be activated in real-world applications, pointing out the usefulness of an adequate substrate model to avoid failures that are hard to predict. The final part of this chapter is devoted to the identification of specific cases where substrate currents adversely affect the functionality of circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Gariboldi, F. Pulvirenti, A 70 mΩ intelligent high side switch with full diagnostics. IEEE J. Solid State Circuits 31(7), 915–923 (1996)

    Article  Google Scholar 

  2. C. Contiero, P. Galbiati, M. Palmieri, G. Ricotti, R. Stella, Smart power approaches VLSI complexity, in Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs, 1998. ISPSD 98 (1998), pp. 11–16

    Google Scholar 

  3. M.I.C. Simas, P. Santos, P. Casimiro, M. Lanca, Smart power in MOS technologies-an overview, in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), vol. 2 (July 1997), pp. 371–376

    Google Scholar 

  4. W. Pribyl, Integrated smart power circuits technology, design and application, in Proceedings of the 22nd European Solid-State Circuits Conference (ESSCIRC) (Sept 1996), pp. 19–26

    Google Scholar 

  5. B. Jayant Baliga, Fundamentals of Power Semiconductor Devices (Springer Science & Business Media, New York, 2010)

    Google Scholar 

  6. B.J. Baliga, An overview of smart power technology. IEEE Trans. Electron Devices 38(7), 1568–1575 (1991)

    Article  Google Scholar 

  7. B. Murari, F. Bertotti, G.A. Vignola, Smart Power ICs: Technologies and Applications, vol. 6 (Springer Science & Business Media, Berlin, 2002)

    Google Scholar 

  8. A. Elmoznine, J. Buxo, M. Bafleur, P. Rossel, The smart power high-side switch: description of a specific technology, its basic devices, and monitoring circuitries. IEEE Trans. Electron Devices 37(4), 1154–1161 (1990)

    Article  Google Scholar 

  9. S.L. Wong, S. Venkitasubrahmanian, M.J. Kim, J.C. Young, Design of a 60-V 10-A intelligent power switch using standard cells. IEEE J. Solid State Circuits 27(3), 429–432 (1992)

    Article  Google Scholar 

  10. H. Ballan, M. Declercq, M. Declercq, High Voltage Devices and Circuits in Standard CMOS Technologies (Springer, New York, 1999)

    Book  Google Scholar 

  11. R.M. Forsyth, Technology and design of integrated circuits for up to 50 V applications, in IEEE International Conference on Industrial Technology, vol. 1 (IEEE, New York, 2003), pp. 7–13

    Google Scholar 

  12. A. Andreini, C. Contiero, P. Galbiati, A new integrated silicon gate technology combining bipolar linear, CMOS logic, and DMOS power parts. IEEE Trans. Electron Devices 33(12), 2025–2030 (1986)

    Article  Google Scholar 

  13. R. Roggero, G. Croce, P. Gattari, E. Castellana, A. Molfese, G. Marchesi, L. Atzeni, C. Buran, A. Paleari, G. Ballarin et al., BCD8sP: an advanced 0.16 μm technology platform with state of the art power devices, in 25th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (IEEE, New York, 2013), pp. 361–364

    Google Scholar 

  14. K.-S. Ko, S.-H. Lee, J.-W. Park, I.-W. Cho, K.-D. Yoo, J.-H. Kim, Proposal of 130 nm-60 V rated fully isolated LDNMOS with double Epi process, in 26th International Symposium on Power Semiconductor Devices & ICs (IEEE, New York, 2014), pp. 398–401

    Google Scholar 

  15. A. Moscatelli, A. Merlini, G. Croce, P. Galbiati, C. Contiero, LDMOS implementation in a 0.35 μm BCD technology (BCD6), in The 12th International Symposium on Power Semiconductor Devices and ICs (IEEE, New York, 2000), pp. 323–326

    Google Scholar 

  16. V. Parthasarathy, R. Zhu, V. Khemka, T. Roggenbauer, A. Bose, P. Hui, P. Rodriquez, J. Nivison, D. Collins, Z. Wu, I. Puchades, M. Butner, A 0.25/spl mu/m CMOS based 70 V smart power technology with deep trench for high-voltage isolation, in International Electron Devices Meeting, 2002. IEDM ’02 (2002), pp. 459–462

    Google Scholar 

  17. P. Wessels, M. Swanenberg, H. van Zwol, B. Krabbenborg, H. Boezen, M. Berkhout, A. Grakist, Advanced BCD technology for automotive, audio and power applications. Solid State Electron. 51(2), 195–211 (2007)

    Article  Google Scholar 

  18. R. Minixhofer, N. Feilchenfeld, M. Knaipp, G. Röhrer, J.M. Park, M. Zierak, H. Enichlmair, M. Levy, B. Loeffler, D. Hershberger, F. Unterleitner, M. Gautsch, K. Chatty, Y. Shi, W. Posch, E. Seebacher, M. Schrems, J. Dunn, D. Harame, A 120 V 180 nm high voltage CMOS smart power technology for system-on-chip integration, in 22nd International Symposium on Power Semiconductor Devices & IC’s (ISPSD) (2010), pp. 75–78

    Google Scholar 

  19. S. Li, Y. Fu, Smart power technology and power semiconductor devices, in 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics (Springer, Berlin, 2012), pp. 187–236

    Google Scholar 

  20. M. Stecher, N. Jensen, M. Denison, R. Rudolf, B. Strzalkoswi, M.N. Muenzer, L. Lorenz, Key technologies for system-integration in the automotive and industrial applications. IEEE Trans. Power Electron. 20(3), 537–549 (2005)

    Article  Google Scholar 

  21. J.P. Laine, L. Bertolini, M. Bafleur, C. Lochot, High-level substrate current effects in P-/-epitaxy/P+/-substrate smart power technologies, in IEEE 15th International Symposium on Power Semiconductor Devices and ICs (IEEE, New York, 2003), pp. 253–256

    Google Scholar 

  22. V. Parthasarathy, V. Khemka, R. Zhu, I. Puchades, T. Roggenbauer, M. Butner, P. Hui, P. Rodriquez, A. Bose, A multi trench analog + logic protection (M-TRAP) for substrate crosstalk prevention in a 0.25 μm smart power platform with 100 V high-side capability, in Proceedings of the IEEE 16th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (May 2004), pp. 427–430

    Google Scholar 

  23. E.N. Stefanov, G. Charitat, N. Nolhier, P. Rossel, Transient behaviour of isolation architectures in smart power integrated circuits, in European Conference on Power Electronics and Applications, vol. 3 (1997), pp. 3–036

    Google Scholar 

  24. D.A. Grant, J. Gowar, Power MOSFETs: Theory and Applications (Wiley-Interscience, New York, 1989)

    Google Scholar 

  25. H. Casier, P. Moens, K. Appeltans, Technology considerations for automotive, in Proceeding of the 34th European Solid-State Device Research Conference, 2004. ESSDERC 2004 (IEEE, New York, 2004), pp. 37–41

    Google Scholar 

  26. B. Murari, Power integrated circuits: problems, tradeoffs, and solutions. IEEE J. Solid State Circuits 13(3), 307–319 (1978)

    Article  Google Scholar 

  27. T. Steinecke, M. Bischoff, F. Brandl, C. Hermann, F. Klotz, F. Mueller, W. Pfaff, M. Unger, Generic IC EMC test specification, in Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC) (IEEE, New York, 2012), pp. 5–8

    Google Scholar 

  28. M.A.K. Wiles, An overview of automotive EMC anechoic chambers, in 10th International Conference on Electromagnetic Interference & Compatibility, 2008. INCEMIC 2008 (IEEE, New York, 2008), pp. 75–80

    Google Scholar 

  29. H. Casier, Electronic circuits in an automotive environment. Tutorial Presentation T3, ISSCC 2004, Feb. 15, 2004, San Francisco

    Google Scholar 

  30. A.H.M. Van Roermund, H. Casier, M. Steyaert, Analog Circuit Design (Springer, New York, 2006)

    Book  MATH  Google Scholar 

  31. O. Jović, Susceptibility of ICs to conducted electromagnetic interference. IEEE Trans. Electromagn. Compat. 34, 123–137 (2009)

    Google Scholar 

  32. J.-M. Redouté, M. Steyaert, EMC of Analog Integrated Circuits (Springer Science & Business Media, New York, 2009)

    Google Scholar 

  33. S. Miropolsky, S. Frei, J. Frensch, Modeling of bulk current injection (BCI) setups for virtual automotive IC tests, in EMC Europe (2010)

    Google Scholar 

  34. E.B. Joffe, Power line transients on a bus due to the operation of the electrical systems, in International Symposium on Electromagnetic Compatibility (IEEE, New York, 1999), pp. 758–761

    Google Scholar 

  35. H. Pues, D. Pissoort, Design of IEC 62132-4 compliant DPI test Boards that work up to 2 GHz, in International Symposium on Electromagnetic Compatibility (EMC EUROPE) (IEEE, New York, 2012), pp. 1–4

    Google Scholar 

  36. J.-M. Redoute, M. Steyaert, An EMI resisting LIN driver in 0.35-micron high-voltage CMOS. IEEE J. Solid State Circuits 42(7), 1574–1582 (2007)

    Google Scholar 

  37. A. Wieers, H. Casier, Methodology and case study for high immunity automotive design, in Analog Circuit Design (Springer, Berlin, 2006), pp. 219–237

    Google Scholar 

  38. F. Fiori, Susceptibility of smart power ICs to radio frequency interference. IEEE Trans. Power Electron. 29(6), 2787–2797 (2014)

    Article  Google Scholar 

  39. H.-P. Hong, J.-C. Wu, A reverse-voltage protection circuit for MOSFET power switches. IEEE J. Solid State Circuits 36(1), 152–155 (2001)

    Article  Google Scholar 

  40. S. Saponara, G. Pasetti, F. Tinfena, L. Fanucci, P. D’Abramo, HV-CMOS design and characterization of a smart rotor coil driver for automotive alternators. IEEE Trans. Ind. Electron. 60(6), 2309–2317 (2013)

    Article  Google Scholar 

  41. B. Deutschmann, F. Magrini, Y. Cao, Robustness of ESD protection structures against automotive transient disturbances, in Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC) (IEEE, New York, 2010), pp. 1028–1031

    Google Scholar 

  42. W. Pfaff et al., Generic IC EMC Test Specification (ZVEI - German Electrical and Electronic Manufacturers Association, Electrical Components and Systems Division, Frankfurt am Main, 2017)

    Google Scholar 

  43. R.M. Warner, B.L. Grung, Semiconductor Device Electronics (Saunders College Publishing, Philadelphia, 1991)

    Google Scholar 

  44. G.C.M. Meijer, Integrated circuits and components for bandgap references and temperature transducers. PhD thesis, TU Delft, Delft University of Technology, 1982

    Google Scholar 

  45. W. Horn, H. Zitta, A robust smart power bandgap reference circuit for use in an automotive environment. IEEE J. Solid State Circuits 37(7), 949–952 (2002)

    Article  Google Scholar 

  46. M. Wendt, L. Thoma, B. Wicht, D. Schmitt-Landsiedel, A configurable high-side/low-side driver with fast and equalized switching delay. IEEE J. Solid State Circuits 43(7), 1617–1625 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buccella, P., Stefanucci, C., Kayal, M., Sallese, JM. (2018). Design Challenges in High-Voltage ICs. In: Parasitic Substrate Coupling in High Voltage Integrated Circuits. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-74382-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74382-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74381-3

  • Online ISBN: 978-3-319-74382-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics