What Future for Angiogenesis?

  • Andreas Bikfalvi
Chapter

Abstract

We have seen that angiogenesis research, at the molecular level, was initiated by studying the interaction between cancer cells and blood vessels. These studies have helped us to uncover some of the molecular mechanisms and actors involved in controlling the growth of blood vessels. Knowledge from these studies has entered many other fields, including developmental biology and cardiovascular and inflammatory pathology, which have continued to enrich our understanding of angiogenesis and physiopathology. The angiogenesis field has recently made progress at an exponential level. Many mechanisms have been elucidated and angiogenesis has entered the clinical era. One wonders what remains to be discovered! We discuss in this section a number of critical issues that seem important.

References

  1. 310.
    He L, Vanlandewijck M, Raschperger E, Andaloussi Mae M, Jung B, Lebouvier T, Ando K, Hofmann J, Keller A, Betsholtz C (2016) Analysis of the brain mural cell transcriptome. Sci Rep 6:35108. https://doi.org/10.1038/srep35108CrossRefPubMedPubMedCentralGoogle Scholar
  2. 139.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342. https://doi.org/10.1056/NEJMoa032691CrossRefPubMedPubMedCentralGoogle Scholar
  3. 311.
    Roviello G, Bachelot T, Hudis CA, Curigliano G, Reynolds AR, Petrioli R, Generali D (2017) The role of bevacizumab in solid tumours: a literature based meta-analysis of randomised trials. Eur J Cancer 75:245–258. https://doi.org/10.1016/j.ejca.2017.01.026CrossRefPubMedGoogle Scholar
  4. 312.
    Ranpura V, Hapani S, Wu S (2011) Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 305(5):487–494. https://doi.org/10.1001/jama.2011.51CrossRefPubMedGoogle Scholar
  5. 313.
    Arrillaga-Romany I, Reardon DA, Wen PY (2014) Current status of antiangiogenic therapies for glioblastomas. Expert Opin Investig Drugs 23(2):199–210. https://doi.org/10.1517/13543784.2014.856880CrossRefPubMedGoogle Scholar
  6. 314.
    Fathpour P, Obad N, Espedal H, Stieber D, Keunen O, Sakariassen PO, Niclou SP, Bjerkvig R (2014) Bevacizumab treatment for human glioblastoma. Can it induce cognitive impairment? Neuro-Oncology 16(5):754–756. https://doi.org/10.1093/neuonc/nou013CrossRefPubMedPubMedCentralGoogle Scholar
  7. 252.
    Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8(4):210–221. https://doi.org/10.1038/nrclinonc.2011.21CrossRefPubMedPubMedCentralGoogle Scholar
  8. 315.
    Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231. https://doi.org/10.1016/j.ccr.2009.01.027CrossRefPubMedPubMedCentralGoogle Scholar
  9. 316.
    Clasper S, Royston D, Baban D, Cao Y, Ewers S, Butz S, Vestweber D, Jackson DG (2008) A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis. Cancer Res 68(18):7293–7303. https://doi.org/10.1158/0008-5472.CAN-07-6506CrossRefPubMedGoogle Scholar
  10. 317.
    Dieterich LC, Seidel CD, Detmar M (2014) Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis 17(2):359–371. https://doi.org/10.1007/s10456-013-9406-1CrossRefPubMedGoogle Scholar
  11. 318.
    Henri O, Pouehe C, Houssari M, Galas L, Nicol L, Edwards-Levy F, Henry JP, Dumesnil A, Boukhalfa I, Banquet S, Schapman D, Thuillez C, Richard V, Mulder P, Brakenhielm E (2016) Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133(15):1484–1497.; discussion 1497. https://doi.org/10.1161/CIRCULATIONAHA.115.020143CrossRefPubMedGoogle Scholar
  12. 319.
    Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JS, Batchelor TT, Sorensen AG (2009) Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 6(6):327–338. https://doi.org/10.1038/nrclinonc.2009.63CrossRefPubMedPubMedCentralGoogle Scholar
  13. 320.
    Sessa C, Guibal A, Del Conte G, Ruegg C (2008) Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat Clin Pract Oncol 5(7):378–391. https://doi.org/10.1038/ncponc1150CrossRefPubMedGoogle Scholar
  14. 321.
    Jubb AM, Harris AL (2010) Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol 11(12):1172–1183. https://doi.org/10.1016/S1470-2045(10)70232-1CrossRefPubMedGoogle Scholar
  15. 322.
    Pohl M, Werner N, Munding J, Tannapfel A, Graeven U, Nickenig G, Schmiegel W, Reinacher-Schick A (2011) Biomarkers of anti-angiogenic therapy in metastatic colorectal cancer (mCRC): original data and review of the literature. Zeitschrift fur Gastroenterologie 49(10):1398–1406. https://doi.org/10.1055/s-0031-1281752CrossRefPubMedGoogle Scholar
  16. 323.
    Schneider BP, Radovich M, Sledge GW, Robarge JD, Li L, Storniolo AM, Lemler S, Nguyen AT, Hancock BA, Stout M, Skaar T, Flockhart DA (2008) Association of polymorphisms of angiogenesis genes with breast cancer. Breast Cancer Res Treat 111 (1):157-163. doi:https://doi.org/10.1007/s10549-007-9755-9CrossRefPubMedGoogle Scholar
  17. 324.
    Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, Lahdenranta J, Chung DC, Fischman AJ, Lauwers GY, Shellito P, Czito BG, Wong TZ, Paulson E, Poleski M, Vujaskovic Z, Bentley R, Chen HX, Clark JW, Jain RK (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27(18):3020–3026. https://doi.org/10.1200/JCO.2008.21.1771CrossRefPubMedPubMedCentralGoogle Scholar
  18. 325.
    Emblem KE, Farrar CT, Gerstner ER, Batchelor TT, Borra RJ, Rosen BR, Sorensen AG, Jain RK (2014) Vessel caliber–a potential MRI biomarker of tumour response in clinical trials. Nat Rev Clin Oncol 11(10):566–584. https://doi.org/10.1038/nrclinonc.2014.126CrossRefPubMedPubMedCentralGoogle Scholar
  19. 326.
    Daniels LB, Maisel AS (2015) Cardiovascular biomarkers and sex: the case for women. Nat Rev Cardiol. https://doi.org/10.1038/nrcardio.2015.105
  20. 327.
    Awata T (2010) Vascular endothelial growth factor gene polymorphisms in susceptibility to coronary artery disease. Am J Hypertens 23(9):938–939. https://doi.org/10.1038/ajh.2010.151CrossRefPubMedGoogle Scholar
  21. 328.
    Bry M, Kivela R, Leppanen VM, Alitalo K (2014) Vascular endothelial growth factor-B in physiology and disease. Physiol Rev 94(3):779–794. https://doi.org/10.1152/physrev.00028.2013CrossRefPubMedGoogle Scholar
  22. 329.
    De Sutter J, Van de Veire NR, Struyf S, Philippe J, De Buyzere M, Van Damme J (2012) PF-4var/CXCL4L1 predicts outcome in stable coronary artery disease patients with preserved left ventricular function. PLoS One 7(2):e31343. https://doi.org/10.1371/journal.pone.0031343CrossRefPubMedPubMedCentralGoogle Scholar
  23. 330.
    Joshi S, Viljoen A (2015) Renal biomarkers for the prediction of cardiovascular disease. Curr Opin Cardiol 30(4):454–460. https://doi.org/10.1097/HCO.0000000000000177CrossRefPubMedGoogle Scholar
  24. 331.
    Shah SH, Newgard CB (2015) Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. Circ Cardiovasc Genet 8(2):410–419. https://doi.org/10.1161/CIRCGENETICS.114.000223CrossRefPubMedPubMedCentralGoogle Scholar
  25. 332.
    Saif J, Emanueli C (2014) miRNAs in post-ischaemic angiogenesis and vascular remodelling. Biochem Soc Trans 42(6):1629–1636. https://doi.org/10.1042/BST20140263CrossRefPubMedGoogle Scholar
  26. 333.
    Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han HD, Shah MY, Rodriguez-Aguayo C, Bottsford-Miller J, Liu Y, Kim SB, Unruh A, Gonzalez-Villasana V, Huang L, Zand B, Moreno-Smith M, Mangala LS, Taylor M, Dalton HJ, Sehgal V, Wen Y, Kang Y, Baggerly KA, Lee JS, Ram PT, Ravoori MK, Kundra V, Zhang X, Ali-Fehmi R, Gonzalez-Angulo AM, Massion PP, Calin GA, Lopez-Berestein G, Zhang W, Sood AK (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427. https://doi.org/10.1038/ncomms3427CrossRefPubMedPubMedCentralGoogle Scholar
  27. 334.
    Joosten SC, Hamming L, Soetekouw PM, Aarts MJ, Veeck J, van Engeland M, Tjan-Heijnen VC (2015) Resistance to sunitinib in renal cell carcinoma: From molecular mechanisms to predictive markers and future perspectives. Biochim Biophys Acta 1855(1):1–16. https://doi.org/10.1016/j.bbcan.2014.11.002CrossRefPubMedGoogle Scholar
  28. 335.
    Romaine SP, Tomaszewski M, Condorelli G, Samani NJ (2015) MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart 101(12):921–928. https://doi.org/10.1136/heartjnl-2013-305402CrossRefPubMedPubMedCentralGoogle Scholar
  29. 336.
    Michalik KM, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397. https://doi.org/10.1161/CIRCRESAHA.114.303265CrossRefPubMedGoogle Scholar
  30. 337.
    Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116(7):1143–1156. https://doi.org/10.1161/CIRCRESAHA.116.305510CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Andreas Bikfalvi
    • 1
  1. 1.Angiogenesis and Tumor Microenvironment LaboratoryUniversity of Bordeaux and National Institute of Health and Medical ResearchPessacFrance

Personalised recommendations