Advertisement

Lymphangiogenesis Enters the Dance

  • Andreas Bikfalvi
Chapter

Abstract

The lymphatic system differs significantly from blood vessels because it consists of a unidirectional system of tubes. The lymphatic vessels drain tissue fluids to the major lymph nodes and lymphatic vessels, which then reach the circulation.

References

  1. 82.
    Sabin FR (1916) The method of growth of the lymphatic system. Science 44(1127):145–158. https://doi.org/10.1126/science.44.1127.145CrossRefPubMedGoogle Scholar
  2. 83.
    Sabin FR (1902) On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1:367–389CrossRefGoogle Scholar
  3. 265.
    Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778CrossRefPubMedGoogle Scholar
  4. 266.
    Nicenboim J, Malkinson G, Lupo T, Asaf L, Sela Y, Mayseless O, Gibbs-Bar L, Senderovich N, Hashimshony T, Shin M, Jerafi-Vider A, Avraham-Davidi I, Krupalnik V, Hofi R, Almog G, Astin JW, Golani O, Ben-Dor S, Crosier PS, Herzog W, Lawson ND, Hanna JH, Yanai I, Yaniv K (2015) Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522(7554):56–61. https://doi.org/10.1038/nature14425CrossRefPubMedGoogle Scholar
  5. 267.
    Martinez-Corral I, Ulvmar MH, Stanczuk L, Tatin F, Kizhatil K, John SW, Alitalo K, Ortega S, Makinen T (2015) Nonvenous origin of dermal lymphatic vasculature. Circ Res 116(10):1649–1654. https://doi.org/10.1161/CIRCRESAHA.116.306170CrossRefPubMedGoogle Scholar
  6. 268.
    Klotz L, Norman S, Vieira JM, Masters M, Rohling M, Dube KN, Bollini S, Matsuzaki F, Carr CA, Riley PR (2015) Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522(7554):62–67. https://doi.org/10.1038/nature14483CrossRefPubMedPubMedCentralGoogle Scholar
  7. 170.
    Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15(7):1751PubMedPubMedCentralGoogle Scholar
  8. 269.
    Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198. https://doi.org/10.1038/84643CrossRefPubMedGoogle Scholar
  9. 270.
    Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M, Alitalo K (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61(5):1786–1790PubMedGoogle Scholar
  10. 271.
    Vaahtomeri K, Karaman S, Makinen T, Alitalo K (2017) Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev 31(16):1615–1634. https://doi.org/10.1101/gad.303776.117CrossRefPubMedPubMedCentralGoogle Scholar
  11. 272.
    Deng Y, Atri D, Eichmann A, Simons M (2013) Endothelial ERK signaling controls lymphatic fate specification. J Clin Invest 123(3):1202–1215. https://doi.org/10.1172/JCI63034CrossRefPubMedPubMedCentralGoogle Scholar
  12. 180.
    Shin JW, Min M, Larrieu-Lahargue F, Canron X, Kunstfeld R, Nguyen L, Henderson JE, Bikfalvi A, Detmar M, Hong YK (2006) Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 17(2):576–584. https://doi.org/10.1091/mbc.E05-04-0368CrossRefPubMedPubMedCentralGoogle Scholar
  13. 273.
    Cao R, Ji H, Feng N, Zhang Y, Yang X, Andersson P, Sun Y, Tritsaris K, Hansen AJ, Dissing S, Cao Y (2012) Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci U S A 109(39):15894–15899. https://doi.org/10.1073/pnas.1208324109CrossRefPubMedPubMedCentralGoogle Scholar
  14. 274.
    Sabine A, Bovay E, Demir CS, Kimura W, Jaquet M, Agalarov Y, Zangger N, Scallan JP, Graber W, Gulpinar E, Kwak BR, Makinen T, Martinez-Corral I, Ortega S, Delorenzi M, Kiefer F, Davis MJ, Djonov V, Miura N, Petrova TV (2015) FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J Clin Invest 125(10):3861–3877. https://doi.org/10.1172/JCI80454CrossRefPubMedPubMedCentralGoogle Scholar
  15. 275.
    Gordon K, Schulte D, Brice G, Simpson MA, Roukens MG, van Impel A, Connell F, Kalidas K, Jeffery S, Mortimer PS, Mansour S, Schulte-Merker S, Ostergaard P (2013) Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like primary lymphedema. Circ Res 112(6):956–960. https://doi.org/10.1161/CIRCRESAHA.113.300350CrossRefPubMedGoogle Scholar
  16. 276.
    Karaman S, Detmar M (2014) Mechanisms of lymphatic metastasis. J Clin Invest 124(3):922–928. https://doi.org/10.1172/JCI71606CrossRefPubMedPubMedCentralGoogle Scholar
  17. 277.
    Dadras SS, Lange-Asschenfeldt B, Velasco P, Nguyen L, Vora A, Muzikansky A, Jahnke K, Hauschild A, Hirakawa S, Mihm MC, Detmar M (2005) Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 18(9):1232–1242. https://doi.org/10.1038/modpathol.3800410CrossRefPubMedGoogle Scholar
  18. 278.
    Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682. https://doi.org/10.1093/emboj/20.4.672CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Andreas Bikfalvi
    • 1
  1. 1.Angiogenesis and Tumor Microenvironment LaboratoryUniversity of Bordeaux and National Institute of Health and Medical ResearchPessacFrance

Personalised recommendations