The Role of the Coefficient of Permeability K

  • Luigi Coppola


In this chapter it will be analysed the downward movement of water due to gravity, favoured by a permeability (K) more or less large, whereas the ascending, generally superficial, movement will be treated in the end for particular cases where even on jungle-like, intensely forested slopes (see Fig.  5.23 in Chap. 5) it is possible that there are plastic-rotational landslides that evolve in flows.


  1. Baligh, M. M. & Levadoux, J. N. (1980). Pore pressure dissipation after cone penetration. Research Report R. 80–11, Mit, Cambridge, MA. Google Scholar
  2. Baver, L. D. (1948). Soil Psysic (p. 398). Chapman and Hall Ltd.: Londres.Google Scholar
  3. Bishop, W. A. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1).Google Scholar
  4. Bromhead, E. N. (1986). The stability of slopes. Blackie & Son Ltd.Google Scholar
  5. Bromhead, E. N., Coppola, L., & Rendell, H. M. (1994). Geotechnical background to problems of conservation of the medieval centre of Tricarico, southern Italy. Quarterly Journal of Engineering Geology, 27, 293–307.CrossRefGoogle Scholar
  6. Cancelli, A., Pellegrini, M. (1987). Deep-seated gravitational deformations in the Northern Apennines, Italy. In Proceedings of the 5a International Conference and Field Workshop on Landslides (pp. 171–178). Christchurch.Google Scholar
  7. Castany, G. (1967). Traité pratique des eaux souterraines (duexième ed.). Paris: Dunod.Google Scholar
  8. Cello, G. & Coppola, L. (1984). Assetto Geologico-Strutturale dell’Area Anconetana e sua Evoluzione Plio-Quaternaria. Bollettino della Società Geologica Italiana, 103, 97–109, 6 ff., 2 tavv.Google Scholar
  9. Cerere, V., Lembo Fazio, A. (1986). Condizioni di sollecitazione indotte dalla presenza di una placca lapidea su un substrato deformabile. In Atti del XVI Convegno Italiano di Geotecnica (Vol. I, pp. 191–202). Bologna.Google Scholar
  10. Combeau, A. & Monnier, G. (1961). Sols africains, 6(1), 4–32.Google Scholar
  11. Coppola, L. (1993). Evoluzione tettonica e meccanismi deformativi della media Valle del Basento, Bollettino della Società Geologica Italiana, 112, 159–179, 20 ff., 1 tav. f.t.Google Scholar
  12. Coulomb, C. A. (1773). Essai sur une Application de Regles de Maximis et Minimis a Quelques Problemes de Statique Relatifs a l’Architecture. In Mémoires de Mathématique & de Physique, présentés à l’Académie Royale des Sciences par divers Savans, & lus* dans ses Assemblées (Vol. 7).Google Scholar
  13. Delpont, G., Deramont, J., Guchereau, J. Y., Joseph, J., Majeste-Menjoulas, C. L., Soula, J. C., et al. (1973). Ruptures extensives et cisaillantes dans des series rythmiques sédimentaires (Montagne Noire et Pyrénées). Revue de Géographie Physique et de Géologie Dynamique, France, 15(5), 567–574.Google Scholar
  14. Di Maio, C. (1996a). Exposure of bentonite to salt solution: Osmotic and mechanical effects. Géotechnique, 695–707.Google Scholar
  15. Di Maio, C. (1996b). The influence of pore fluid composition on the residual shear strength of some natural clayey soils. In Atti del VII International Symposium on Landslides (Vol. 2, pp. 1189–1194). Trondheim.Google Scholar
  16. Dupuit, J (1863) Etudes théoriques et pratiques sur le movement des eaux dans le canaux découverts et à travers les terrains perméables, 2e édit. Paris: Dunod.Google Scholar
  17. Eigenbrod, K. D., Graham, J., Burak, J. P. (1992). Influence of cycling porewater pressures and principal stress ratios on drained deformations in clay. Canadian Geotechnical Journal, 326–333.Google Scholar
  18. Fellenius, W. (1992). Erdstatisce Berechnungen. Berlin: W. Ernst.Google Scholar
  19. Fenelli, G. B., Picarelli, L., Silvestri, F. (1992). Deformation process of a hill shaken by the Irpinia earthquake in 1980. In Atti del Conv. Italo-FranceseStabilità dei Pendii in Zona Sismica”. Bordighera.Google Scholar
  20. Fitz Patrick, E. A. (1988). Soil horizon designation and classification. Technical Paper 17 Isric, Wageningeu.Google Scholar
  21. Janbu, N. (1973). Slope stability computations. The Embankment dam engineering: Casagrande Volume (pp. 47–86). Wiley.Google Scholar
  22. Lambe, T. W. & Marr, W. A. (1979). Stress path method (2nd ed., 724–738) JGED, ASCE, June 1979.Google Scholar
  23. Lefebvre, G. (1987). Slope instability and valley formation in Canadian soft clay deposits. Canadian Geotechnical Journal, XXIV(3), 261–270.Google Scholar
  24. Matheson, D. S., & Thomson, S. (1973). Geological implications of valley rebound. Canadian Journal Earth Sciences, X, 961–978.Google Scholar
  25. Morgenstern, N. R., & Price, V. E. (1965). The analysis of the stability of general slip surfaces. Geotechnique, 15, 79–93.CrossRefGoogle Scholar
  26. Pasek, J. (1974). Gravitational block-type slope movements. In Proceedings of the 2th International Congress (Vol. II, th. V-PC 1). Sao Paulo: IAEG.Google Scholar
  27. Picarelli, L. (1993). Structure and properties of clay shales involved in earthflows. In Atti dell’International SymposiumThe Geotechnical Engineering of Hard Soils-Soft Rocks” (Vol. 3, pp. 2009–2019). Atene.Google Scholar
  28. Picarelli, L. (1999). Meccanismi di Deformazione e rottura dei pendii. In Argomenti di Ingegneria Geotecnica (Vol. 14). Hevelius Edizioni.Google Scholar
  29. Sarma, S. H. (1979). Stability analysis of embankments and slopes. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, 105(GT 12).Google Scholar
  30. Skempton, A. W. (1948). The ϕ = 0 analysis of stability and its theoretical basis. In 2nd ICSM. Rotterdam.Google Scholar
  31. Skempton, A. W., & Petley, D. J. (1967). The strength alone discontinuities in stiff clays. In Atti della Geotechnical Conference (Vol. 2, pp. 29–46). Oslo.Google Scholar
  32. Taylor, D. W. (1948). Fundamentals of soil mechanics. New York: Wiley.Google Scholar
  33. Terzaghi, K., & Peck, R. B. (1967). Soil mechanics in engineering practice (2nd ed.). New York: Wiley. The first edition was published in 1948.Google Scholar
  34. Tison, L. J. (1953). Cours d’hydraulique, 2e parties (pp. 265–430).Google Scholar
  35. Torstensson, B. A. (1975). Pore pressure sounding instrument. In Proceedings of the ASCE Specialty Conference, Measurement of Soil Properties. Raleigh: North Carolina State University.Google Scholar
  36. Torstensson, B. A., & Petsonk, A. (1985). Bat water monitoring system. In ASTM Symposium of Field Methods for Ground Water Contamination Studies and their Standardisation. Cocoa Beach, FL, USA, February 2–7, 1985.Google Scholar
  37. Varnes, D. J. (1978). Slope movement types and processes. In R. L. Schuster & R. J. Krizek (Eds.), Landslides: Analysis and control. Washington, DC.Google Scholar
  38. Vigneron, J., & Desaunettes, J. R. (1960). VII congrès international de science du sol (Vols. 1, I, 5, pp. 114–121). Hadison.Google Scholar
  39. Yoshida, N. (1990). Time-dependent instability in fissured overconsolidated clays and mudstones (Ph.D. thesis). University of Alberta, Edmonton.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of BasilicataPotenzaItaly

Personalised recommendations